全文获取类型
收费全文 | 20483篇 |
免费 | 1629篇 |
国内免费 | 1724篇 |
专业分类
23836篇 |
出版年
2024年 | 76篇 |
2023年 | 267篇 |
2022年 | 649篇 |
2021年 | 980篇 |
2020年 | 666篇 |
2019年 | 811篇 |
2018年 | 883篇 |
2017年 | 586篇 |
2016年 | 903篇 |
2015年 | 1207篇 |
2014年 | 1389篇 |
2013年 | 1538篇 |
2012年 | 1866篇 |
2011年 | 1667篇 |
2010年 | 1049篇 |
2009年 | 950篇 |
2008年 | 1181篇 |
2007年 | 1043篇 |
2006年 | 927篇 |
2005年 | 833篇 |
2004年 | 645篇 |
2003年 | 593篇 |
2002年 | 524篇 |
2001年 | 395篇 |
2000年 | 327篇 |
1999年 | 307篇 |
1998年 | 197篇 |
1997年 | 153篇 |
1996年 | 112篇 |
1995年 | 118篇 |
1994年 | 85篇 |
1993年 | 77篇 |
1992年 | 105篇 |
1991年 | 101篇 |
1990年 | 91篇 |
1989年 | 71篇 |
1988年 | 60篇 |
1987年 | 55篇 |
1986年 | 40篇 |
1985年 | 48篇 |
1984年 | 25篇 |
1983年 | 24篇 |
1982年 | 23篇 |
1981年 | 14篇 |
1979年 | 20篇 |
1978年 | 16篇 |
1977年 | 19篇 |
1976年 | 15篇 |
1975年 | 14篇 |
1972年 | 15篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Xiaoyu Zhang Hailang Tong Zhiqiang Han Long Huang Jing Tian Zhixing Fu Yunyi Wu Ting Wang Deyi Yuan 《Physiology and Molecular Biology of Plants》2021,27(5):959
Camellia oleifera is believed to exhibit a complex intraspecific polyploidy phenomenon. Abnormal microsporogenesis can promote the formation of unreduced gametes in plants and lead to sexual polyploidy, so it is hypothesized that improper meiosis probably results in the formation of natural polyploidy in Camellia oleifera. In this study, based on the cytological observation of meiosis in pollen mother cells (PMCs), we found natural 2n pollen for the first time in Camellia oleifera, which may lead to the formation of natural polyploids by sexual polyploidization. Additionally, abnormal cytological behaviour during meiosis, including univalent chromosomes, extraequatorial chromosomes, early segregation, laggard chromosomes, chromosome stickiness, asynchronous meiosis and deviant cytokinesis (monad, dyads, triads), was observed, which could be the cause of 2n pollen formation. Moreover, we confirmed a relationship among the length–width ratio of flower buds, stylet length and microsporogenesis. This result suggested that we can immediately determine the microsporogenesis stages by phenotypic characteristics, which may be applicable to breeding advanced germplasm in Camellia oleifera.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01002-5. 相似文献
52.
53.
通过人为控制CO2浓度(700、400 μmol·mol-1)和氮素水平(120 kg N·hm-2),研究了CO2浓度增加和氮沉降及其交互作用对北界(辽宁庄河)栓皮栎幼苗生理生态特征的影响.结果表明: CO2浓度升高使栓皮栎幼苗叶片的形态、光合色素含量和氮含量有减小的趋势,暗呼吸速率较对照降低63.3%,可溶性糖增加2.6%.氮沉降对栓皮栎叶片的形态和光合色素含量有明显的促进作用,叶N含量增加而K含量降低,N/K值增加26.7%.CO2和N交互作用对幼苗叶形态和光合作用有明显的促进作用,叶片最大净光合速率和光饱和点分别是对照的1.4倍和2.6倍,暗呼吸速率和光补偿点分别降低65.9%和50.0%.CO2浓度升高和N沉降均对栓皮栎幼苗生长有一定的促进作用,可能导致栓皮栎分布界线北移. 相似文献
54.
Shiyu Wang Shuin Park Vamsi K. Kodali Jaeseok Han Theresa Yip Zhouji Chen Nicholas O. Davidson Randal J. Kaufman 《Molecular biology of the cell》2015,26(4):594-604
Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding–impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly. 相似文献
55.
Ping Xu Yangxi Zheng Jiujiang Liao Mingyu Hu Yike Yang Baozhen Zhang Mark D. Kilby Huijia Fu Yamin Liu Fumei Zhang Liling Xiong Xiyao Liu Huili Jin Yue Wu Jiayu Huang Tingli Han Li Wen Rufei Gao Yong Fu Xiujun Fan Hongbo Qi Philip N. Baker Chao Tong 《Cell proliferation》2023,56(2)
Pre‐eclampsia (PE) is deemed an ischemia‐induced metabolic disorder of the placenta due to defective invasion of trophoblasts during placentation; thus, the driving role of metabolism in PE pathogenesis is largely ignored. Since trophoblasts undergo substantial glycolysis, this study aimed to investigate its function and regulatory mechanism by AMPK in PE development. Metabolomics analysis of PE placentas was performed by gas chromatography–mass spectrometry (GC–MS). Trophoblast‐specific AMPKα1‐deficient mouse placentas were generated to assess morphology. A mouse PE model was established by Reduced Uterine Perfusion Pressure, and placental AMPK was modulated by nanoparticle‐delivered A769662. Trophoblast glucose uptake was measured by 2‐NBDG and 2‐deoxy‐d‐[3H] glucose uptake assays. Cellular metabolism was investigated by the Seahorse assay and GC–MS.PE complicated trophoblasts are associated with AMPK hyperactivation due not to energy deficiency. Thereafter, AMPK activation during placentation exacerbated PE manifestations but alleviated cell death in the placenta. AMPK activation in trophoblasts contributed to GLUT3 translocation and subsequent glucose metabolism, which were redirected into gluconeogenesis, resulting in deposition of glycogen and accumulation of phosphoenolpyruvate; the latter enhanced viability but compromised trophoblast invasion. However, ablation of AMPK in the mouse placenta resulted in decreased glycogen deposition and structural malformation. These data reveal a novel homeostasis between invasiveness and viability in trophoblasts, which is mechanistically relevant for switching between the ‘go’ and ‘grow’ cellular programs.Pre‐eclampsia (PE) is associated with trophoblast AMPK hyperactivation, presumably due to LKB1 phosphorylation, and glucose uptake is consequently increased via trafficking of GLUT3 from the cytosol to the plasma membrane. Such translocation enhances glycolytic flux and redirects glucose metabolic intermediates into gluconeogenesis, resulting in PEP accumulation, which not only benefits cell survival but also suppresses invasion by repressing MMPs, and thus in turn modulates switching between the ‘go’ and ‘grow’ cellular programs. 相似文献
56.
57.
Han Xu Xubin Pan Yun Song Ying Huang Minmin Sun Shuifang Zhu 《Biodiversity and Conservation》2014,23(10):2637-2643
Alien species are brought into countries world wide on a massive scale for agricultural production, ex situ conservation, landscape aesthetics, gardens, and ecosystem restoration. Unfortunately, some of these species have escaped and adversely impacted on regional as well as global biodiversity conservation and agricultural production. To reduce such risks, it is necessary to implement specific and effective measures. Since various government departments and institutions are involved in the management of alien species, it is difficult to prevent native and agroecosystems from being invaded by invited species. We propose the establishment of a supervision and inspection continuum over intentional species introduction, similar to that which exists in some countries over unintentional species introductions. Namely, a justification of the necessity to import, a risk assessment, assurances as to provision of an adequate containment facility assessment, and a damage-limitation protocol should that need to be invoked. These requirements should be satisfied before an alien species is knowingly imported, and the necessary follow-up supervision is important post- importation. 相似文献
58.
59.
60.
Shunhui Wei Stephanie Li‐Ying Soh Julia Xia Wei‐Yi Ong Zhiping P. Pang Weiping Han 《Journal of neurochemistry》2014,129(2):328-338
Gain‐of‐toxic‐function mutations in Seipin (Asparagine 88 to Serine (N88S) and Serine 90 to Leucine (S90L) mutations, both of which disrupt the N‐glycosylation) cause autosomal dominant motor neuron diseases. However, the mechanism of how these missense mutations lead to motor neuropathy is unclear. Here, we analyze the impact of disruption of N‐glycosylation of Seipin on synaptic transmission by over‐expressing mutant Seipin in cultured cortical neurons via lentiviral infection. Immunostaining shows that over‐expressed Seipin is partly colocalized with synaptic vesicle marker synaptophysin. Electrophysiological recordings reveal that the Seipin mutation significantly decreases the frequency, but not the amplitudes of miniature excitatory post‐synaptic currents and miniature inhibitory post‐synaptic currents. The amplitude of both evoked excitatory post‐synaptic currents and inhibitory post‐synaptic current is also compromised by mutant Seipin over‐expression. The readily releasable pool and vesicular release probability of synaptic vesicles are both altered in neurons over‐expressing Seipin‐N88S, whereas neither γ‐amino butyric acid (GABA) nor α‐Amino‐3‐hydroxy‐5‐methyl‐4‐ isoxazolepropionic acid (AMPA) induced whole cell currents are affected. Moreover, electron microscopy analysis reveals decreased number of morphologically docked synaptic vesicles in Seipin‐N88S‐expressing neurons. These data demonstrate that Seipin‐N88S mutation impairs synaptic neurotransmission, possibly by regulating the priming and docking of synaptic vesicles at the synapse.