首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   30篇
  2023年   6篇
  2022年   3篇
  2021年   12篇
  2020年   8篇
  2019年   9篇
  2018年   18篇
  2017年   11篇
  2016年   10篇
  2015年   18篇
  2014年   16篇
  2013年   21篇
  2012年   27篇
  2011年   26篇
  2010年   23篇
  2009年   15篇
  2008年   27篇
  2007年   17篇
  2006年   31篇
  2005年   31篇
  2004年   17篇
  2003年   21篇
  2002年   12篇
  2001年   12篇
  2000年   4篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1974年   3篇
  1973年   5篇
  1972年   2篇
  1971年   8篇
  1970年   1篇
  1969年   5篇
  1968年   3篇
  1964年   1篇
排序方式: 共有491条查询结果,搜索用时 0 毫秒
51.
In this study, we consider the effect of carbon dioxide (CO(2)) on the intracellular and extracellular pH of a saline solution of a test-microorganisms Bacillus subtilis. The cytoplasmatic pH was determined by means of a flow cytometry with the fluorescent probe 5(and 6-)-carboxyfluorescein ester (cFSE). The physiological suspension of cells with the addition of the probe was first exposed to high pressure CO(2) for 5 min at different temperatures. The flow cytometry analysis indicated an intracellular depletion inside the cell caused by the action of CO(2), down to 3, the depletion being dependent on inactivation ratio. In addition, the extracellular pH was determined theoretically by means of the statistical associated fluid theory equation of state (SAFT EOS): it was demonstrated that CO(2) under pressure dissolves into liquid phase and acidifies the medium down to 3 at 80 bar and 303.15K. The results show a strong influence between extracellular and intracellular pH, and lead to the conclusion that a strong reduction of the pH homeostasis of the cell can be claimed as one of the most probable cause of inactivation of CO(2) pasteurization.  相似文献   
52.
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and drugs that inhibit this enzyme may have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Here, we describe kinetics and crystal structure of human PNP in complex with 7-methyl-6-thio-guanosine, a synthetic substrate, which is largely used in activity assays. Analysis of the structure identifies different protein conformational changes upon ligand binding, and comparison of kinetic and structural data permits an understanding of the effects of atomic substitution on key positions of the synthetic substrate and their consequences to enzyme binding and catalysis. Such knowledge may be helpful in designing new PNP inhibitors.  相似文献   
53.
In the last few years there has been great concern about declines in the abundance of several species of amphibians around the world. Among amphibians, anurans have a biphasic life cycle, with aquatic tadpoles and generally terrestrial adults, and they have an extremely permeable skin, making them excellent indicators of the health of the environment. A number of different causes have been suggested for the global decline of anurans, the pollution of their habitat by chemical stressors being considered one of the major factors. Among chemical stressors, heavy metals are known for their high toxicity at very low concentrations. This study assessed short- (96 h, 'acute') and long-term (1272 h, 'chronic') exposure to Cr(VI) at lethal (3 to 90 mg 1(-1)) and sublethal concentrations (0.001 to 12 mg 1(-1)) on Hypsiboaspulchellus (previously called Hyla pulchella; see Faivovich et al. 2005) tadpoles (Fam. Hylidae) from central eastern Argentina. Fertilized eggs collected from a clean pond near La Plata (Buenos Aires Province) were used for acute and chronic toxicity testing. Assays were done under controlled laboratory conditions. Results of chronic exposure were used to assess the effect of factors such as toxicant concentration and age of organisms at the beginning of exposure on the response variables (growth, development and survival until metamorphosis). Results indicated a higher sensitivity to Cr(VI) of individuals first exposed as tadpoles than those first exposed as embryos during acute and chronic exposure. Exposure to the highest sublethal concentrations (6 to 12 mg 1(-1)) of the toxicant showed early inhibitory effects on growth of all treated organisms compensated at longer exposure periods with an increase in the growth rate compared to the control groups.  相似文献   
54.
The 5-enolpyruvylshikimate-3-phosphate synthase catalyses the sixth step of the shikimate pathway that is responsible for synthesizing aromatic compounds and is absent in mammals, which makes it a potential target for drugs development against microbial diseases. Here, we report the phosphate binding effects at the structure of the 5-enolpyruvylshikimate-3-phosphate synthase from Mycobacterium tuberculosis. This enzyme is formed by two similar domains that close on each other induced by ligand binding, showing the occurrence of a large conformation change. We have monitored the phosphate binding effects using analytical ultracentrifugation, small angle X-ray scattering and, circular dichroism techniques. The low resolution results showed that the enzyme in the presence of phosphate clearly presented a more compact structure. Thermal-induced unfolding experiments followed by circular dichroism suggested that phosphate rigidified the enzyme. Summarizing, these data suggested that the phosphate itself is able to induce conformational change resulting in the closure movement in the M. tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase.  相似文献   
55.
A major goal of immunotherapy for autoimmune diseases and transplantation is induction of regulatory T cells that mediate immunologic tolerance. The mucosal immune system is unique, as tolerance is preferentially induced after exposure to antigen, and induction of regulatory T cells is a primary mechanism of oral tolerance. Parenteral administration of CD3-specific monoclonal antibody is an approved therapy for transplantation in humans and is effective in autoimmune diabetes. We found that orally administered CD3-specific antibody is biologically active in the gut and suppresses autoimmune encephalomyelitis both before induction of disease and at the height of disease. Orally administered CD3-specific antibody induces CD4+ CD25- LAP+ regulatory T cells that contain latency-associated peptide (LAP) on their surface and that function in vitro and in vivo through a TGF-beta-dependent mechanism. These findings identify a new immunologic approach that is widely applicable for the treatment of human autoimmune conditions.  相似文献   
56.
The Chinook salmon Oncorhynchus tshawytscha, which was introduced deliberately in Chile four decades ago for sport fishing and aquaculture, represents a rare example of a successful translocation of an anadromous Pacific salmon into the southern Hemisphere, offering a unique opportunity to examine the role of introduction history and genetic variability in invasion success. We used historical information and mitochondrial displacement loop sequences (D-loop) from seven colonized sites in Chile and Argentina and from native and naturalized Chinook salmon populations to determine population sources and to examine levels of genetic diversity associated with the invasion. The analysis revealed that the Chinook salmon invasion in Patagonia originated from multiple population sources from northwestern North America and New Zealand, and admixed in the invaded range generating genetically diverse populations. Genetic analyses further indicated that the colonization of new populations ahead of the invasion front appear to have occurred by noncontiguous dispersal. Dispersal patterns coincided with ocean circulation patterns dominated by the West Wind Drift and the Cape Horn Currents. We conclude that admixture following multiple introductions, as well as long-distance dispersal events may have facilitated the successful invasion and rapid dispersal of Chinook salmon into Patagonia.  相似文献   
57.
Most of the metals released from industrial activity, among them are cadmium (Cd) and nickel (Ni), inhibit the productivity of cultures and affect microbial metabolism. In this context, the aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Cd and Ni on cell growth, viability, budding rate and trehalose content of Saccharomyces cerevisiae, likely because of adsorption and chelating action. For this purpose, the yeast was grown batch-wise in YED medium supplemented with selected amounts of vinasse and Cd or Ni. The negative effects of Cd and Ni on S. cerevisiae growth and the mitigating one of sugar cane vinasse were quantified by an exponential model. Without vinasse, the addition of increasing levels of Cd and Ni reduced the specific growth rate, whereas in its presence no reduction was observed. Consistently with the well-proved toxicity of both metals, cell viability and budding rate progressively decreased with increasing their concentration, but in the presence of vinasse the situation was remarkably improved. The trehalose content of S. cerevisiae cells followed the same qualitative behavior as cell viability, even though the negative effect of both metals on this parameter was stronger. These results demonstrate the ability of sugar cane vinasse to mitigate the toxic effects of Cd and Ni.  相似文献   
58.
Administration of the current tuberculosis (TB) vaccine to newborns is not a reliable route for preventing TB in adults. The conversion of XMP to GMP is catalyzed by guaA-encoded GMP synthetase (GMPS), and deletions in the Shiguella flexneri guaBA operon led to an attenuated auxotrophic strain. Here we present the cloning, expression, and purification of recombinant guaA-encoded GMPS from Mycobacterium tuberculosis (MtGMPS). Mass spectrometry data, oligomeric state determination, steady-state kinetics, isothermal titration calorimetry (ITC), and multiple sequence alignment are also presented. The homodimeric MtGMPS catalyzes the conversion of XMP, MgATP, and glutamine into GMP, ADP, PP(i), and glutamate. XMP, NH(4)(+), and Mg(2+) displayed positive homotropic cooperativity, whereas ATP and glutamine displayed hyperbolic saturation curves. The activity of ATP pyrophosphatase domain is independent of glutamine amidotransferase domain, whereas the latter cannot catalyze hydrolysis of glutamine to NH(3) and glutamate in the absence of substrates. ITC data suggest random order of binding of substrates, and PP(i) is the last product released. Sequence comparison analysis showed conservation of both Cys-His-Glu catalytic triad of N-terminal Class I amidotransferase and of amino acid residues of the P-loop of the N-type ATP pyrophosphatase family.  相似文献   
59.
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis (PCM), one of the most prevalent mycosis in Latin America. P. brasiliensis cell wall components interact with host cells and influence the pathogenesis of PCM. Cell wall components, such as glycosylphosphatidylinositol (GPI)-proteins play a critical role in cell adhesion and host tissue invasion. Although the importance of GPI-proteins in the pathogenesis of other medically important fungi is recognized, little is known about their function in P. brasiliensis cells and PCM pathogenesis. We cloned the PbPga1 gene that codifies for a predicted GPI-anchored glycoprotein from the dimorphic pathogenic fungus P. brasiliensis. PbPga1 is conserved in Eurotiomycetes fungi and encodes for a protein with potential glycosylation sites in a serine/threonine-rich region, a signal peptide and a putative glycosylphosphatidylinositol attachment signal sequence. Specific chicken anti-rPbPga1 antibody localized PbPga1 on the yeast cell surface at the septum between the mother cell and the bud with stronger staining of the bud. The exposure of murine peritoneal macrophages to rPbPga1 induces TNF-α release and nitric oxide (NO) production by macrophages. Furthermore, the presence of O-glycosylation sites was demonstrated by β-elimination under ammonium hydroxide treatment of rPbPga1. Finally, sera from PCM patients recognized rPbPga1 by Western blotting indicating the presence of specific antibodies against rPbPga1. In conclusion, our findings suggest that the PbPga1gene codifies for a cell surface glycoprotein, probably attached to a GPI-anchor, which may play a role in P. brasiliensis cell wall morphogenesis and infection. The induction of inflammatory mediators released by rPbPga1 and the reactivity of PCM patient sera toward rPbPga1 imply that the protein favors the innate mechanisms of defense and induces humoral immunity during P. brasiliensis infection.  相似文献   
60.
The 5-phospho-α-D-ribose 1-diphosphate (PRPP) metabolite plays essential roles in several biosynthetic pathways, including histidine, tryptophan, nucleotides, and, in mycobacteria, cell wall precursors. PRPP is synthesized from α-D-ribose 5-phosphate (R5P) and ATP by the Mycobacterium tuberculosis prsA gene product, phosphoribosylpyrophosphate synthase (MtPRS). Here, we report amplification, cloning, expression and purification of wild-type MtPRS. Glutaraldehyde cross-linking results suggest that MtPRS predominates as a hexamer, presenting varied oligomeric states due to distinct ligand binding. MtPRS activity measurements were carried out by a novel coupled continuous spectrophotometric assay. MtPRS enzyme activity could be detected in the absence of P(i). ADP, GDP and UMP inhibit MtPRS activity. Steady-state kinetics results indicate that MtPRS has broad substrate specificity, being able to accept ATP, GTP, CTP, and UTP as diphosphoryl group donors. Fluorescence spectroscopy data suggest that the enzyme mechanism for purine diphosphoryl donors follows a random order of substrate addition, and for pyrimidine diphosphoryl donors follows an ordered mechanism of substrate addition in which R5P binds first to free enzyme. An ordered mechanism for product dissociation is followed by MtPRS, in which PRPP is the first product to be released followed by the nucleoside monophosphate products to yield free enzyme for the next round of catalysis. The broad specificity for diphosphoryl group donors and detection of enzyme activity in the absence of P(i) would suggest that MtPRS belongs to Class II PRS proteins. On the other hand, the hexameric quaternary structure and allosteric ADP inhibition would place MtPRS in Class I PRSs. Further data are needed to classify MtPRS as belonging to a particular family of PRS proteins. The data here presented should help augment our understanding of MtPRS mode of action. Current efforts are toward experimental structure determination of MtPRS to provide a solid foundation for the rational design of specific inhibitors of this enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号