首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   4篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   3篇
  2010年   7篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   3篇
  1977年   2篇
  1975年   5篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1959年   1篇
  1958年   2篇
  1957年   1篇
  1956年   1篇
  1955年   4篇
  1954年   2篇
  1952年   1篇
  1936年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
51.
1. Lake restoration from eutrophication often rests on a simple paradigm that restriction of phosphorus sources will result in recovery of former relatively clear‐water states. This view has apparently arisen from early successful restorations of deep lakes in catchments of poorly weathered rocks. Lakes in the lowlands, however, particularly shallow ones, have proved less tractable to restoration. This study of three lowland lakes provides insights that illuminate a more complex picture. 2. The lakes lie in a sequence along a single stream in a mixed urban and rural landscape. Severely deoxygenating effluent from an overloaded sewage treatment works was diverted from the catchment in 1991. Effects on two lakes, Little Mere (zmax <2 m) and Rostherne Mere (zmax 31 m) were followed until 2002. Mere Mere (zmax = 8 m), upstream of the former works, acted as a comparison for changes in water chemistry. Mere Mere showed no change in total phosphorus (TP), total inorganic nitrogen, or planktonic chlorophyll a concentrations. Increased winter rainfall was associated with higher winter soluble reactive phosphorus (SRP) and ammonium concentrations in its water. 3. Little Mere changed from a deoxygenated, highly enriched, fishless system, with large populations of Daphnia magna Straus, clear water and about 40% aquatic plant cover, to a slightly less clear system following diversion. Daphnia magna was replaced by D. hyalina Leydig as fish recolonised. Spring peaks of chlorophyll a declined but summer concentrations increased significantly. Annual mean chlorophyll a concentrations thus showed no change. Submerged plants became more abundant (up to 100% cover), with fluctuating community composition from year to year. Summer release of SRP from the sediment was substantial and has not decreased since 1993. The summer phytoplankton was apparently controlled by nitrogen availability perhaps with some influence of zooplankton grazing. SRP was always very abundant. The lake appeared to have reached a quasi‐stable state by 2002. 5. Rostherne Mere showed a steady decline in TP and SRP concentrations following effluent diversion apparently as a result of steady dilution by water with lower phosphorus concentration. Decline in phosphorus concentrations was much less rapid than expected because of internal remobilisation from the hypolimnion and sediments. There have been no changes in chlorophyll a concentration or of nitrogen availability and by 2002 the phytoplankton probably remained limited by a combination of mixing, grazing and nitrogen. 6. A seeming paradox is, thus, that immense changes in phosphorus budgets have shown no consequences for phytoplankton chlorophyll concentrations in either of the lakes, although the seasonal distribution has altered in Little Mere. Although these case studies deviate from others, for both shallow and deep lakes, they represent distinctive situations rather than undermining conventional models.  相似文献   
52.
53.
We investigated the effects of long-term CO2 enrichment on foliar chemistry of quaking aspen ( Populus tremuloides ) and the consequences of chemical changes for performance of the gypsy moth ( Lymantria dispar ) and susceptibility of the gypsy moth to a nucleopolyhedrosis virus (NPV). Foliage was collected from outdoor open-top chambers and fed to insects in a quarantine rearing facility. Under enriched CO2, levels of leaf nitrogen declined marginally, levels of starch and phenolic glycosides did not change, and levels of condensed tannins increased. Long-term bioassays revealed reduced growth (especially females), prolonged development and increased consumption in larvae fed high-CO2 foliage but no significant differences in final pupal weights or female fecundity. Short-term bioassays showed weaker, and sex-specific, effects of CO2 treatment on larval performance. Correlation analyses revealed strong, negative associations between insect performance and phenolic glycoside concentrations, independent of CO2 treatment. Larval susceptibility to NPV did not differ between CO2 treatments, suggesting that effects of this natural enemy on gypsy moths are buffered from CO2-induced changes in foliar chemistry. Our results emphasize that the impact of enriched CO2 on plant–insect interactions will be determined not only by how concentrations of plant compounds are altered, but also by the relevance of particular compounds for insect fitness. This work also underscores the need for studies of genetic variation in plant responses to enriched CO2 and long-term population-level responses of insects to CO2-induced changes in host quality.  相似文献   
54.
55.
Dysplastic Nevus Syndrome (DNS) has been defined as that trait characterized by the presence of at least one dysplastic melanocytic nevus. DNS was originally described in kindreds having multiple members with melanoma. Various types DNS have been described in other situations to include individuals with apparently sporadic cases, familial DNS without melanoma and individuals with apparently sporadic DNS with melanoma. These categories are based on historical information in general, and not on examination of family members. In all cases, the presence of dysplastic nevi appear to confer some increased risk of melanoma, which varies between the groups. Similarly cutaneous melanoma is thought to occur in several distinct populations-random individuals without DNS, individuals with sporadic DNS, and those with familial DNS. Genetic analysis of DNS has been largely confined to the classically ascertained kindreds associated with melanoma. These studies have usually used diagnostic criteria based on pathology of clinically selected material, and that evidence suggests that DNS is inherited as an autosomal dominant trait in these families. Surveys of the general population have detected rates of dysplastic nevi of 5% 20%. In our Utah-based studies, we have evaluated probands and family members from three groups. These included kindreds with multiple occurrences of melanoma, random individuals with at least one dysplastic nevus, and cases of melanoma with unknown family history. Controls were spouses of study subjects. We sought to determine the percentage of each group associated with dysplastic nevi and/or genetic DNS. The range of phenotype of patients with dysplastic nevi was large with some individuals having few nevi, none of which were clinically atypical, and others having greater than 100 nevi. The prevalence of dysplastic nevi in at least one of two biopsies in Utah population controls is presently Wtimated at 62%. Some probands with melanoma as well as some of their relatives had elevated numbers of nevi, suggesting that this predisposition to melanoma may be inherited.  相似文献   
56.
Details of the variation in sting morphology for all subfamilies of bees are presented for the first time. A considerable amount of variation, potentially of great utility for phylogenetic studies, has been discovered in every part of this complex structure. Additional probable synapomorphies of bees were found; these include loss of the specialized sensilla-bearing area at the apex of the gonostyli and the reduction and reorientation of the processi mediani at the base of the sting shaft. Synapomorphies for particular subtaxa of bees were found. These include a long, ventral emargination to the second valvifer in Nomiinae and a blister-like protrusion of the lamina spiracularis of the 7th hemitergite in the Megachilinae. Sting reduction and some details of sting morphology would seem to support a relationship between the Stenotritidae and Oxaeinae. Loss of sting function has occurred in four families of bees and repeatedly within the Andrenidae. In some instances loss of function as a sting is associated with increased development of certain structures indicating a change in function for the sting sclerites. It is suggested that all future studies of bee systematics above the species level should include assessment of variation of the sting apparatus and that sting preparations, made and stored in the same manner as preparations of male genitalia, become routine. © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society , 2003, 138 , 1–38.  相似文献   
57.
Specialisms on resources and for niches, leading to specialization, have been construed to be tantamount to speciation and vice versa, while the occurrence of true generalism in nature has also been questioned. We argue that generalism in resource use, biotope occupancy, and niche breadth not only exists, but also forms a crucial part in the evolution of specialists, representing a vital force in speciation and a more effective insurance against extinction. We model the part played by generalism and specialism in speciation and illustrate how a balance may be maintained between the number of specialists and generalists within taxa. The balance occurs as an ongoing cycle arising from turnover in the production of specialists and generalists, speciation, and species extinction. The nature of the balance depends on the type of resources exploited, biotopes, and niche space occupied. These vary between different regions and create taxonomic biases towards generalists or specialists. We envisage that the process may be sympatric/parapatric, although it is more likely initiated by allopatry driven by abiotic forces. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 725–737.  相似文献   
58.
Census population size, sex-ratio and female reproductive success were monitored in 10 laboratory populations of Drosophila melanogaster selected for different ages of reproduction. With this demographic information, we estimated eigenvalue, variance and probability of allele loss effective population sizes. We conclude that estimates of effective size based on gene-frequency change at a few loci are biased downwards. We analysed the relative roles of selection and genetic drift in maintaining genetic variation in laboratory populations of Drosophila. We suggest that rare, favourable genetic variants in our laboratory populations have a high chance of being lost if their fitness effect is weak, e.g. 1% or less. However, if the fitness effect of this variation is 10% or greater, these rare variants are likely to increase to high frequency. The demographic information developed in this study suggests that some of our laboratory populations harbour more genetic variation than expected. One explanation for this finding is that part of the genetic variation in these outbred laboratory Drosophila populations may be maintained by some form of balancing selection. We suggest that, unlike bacteria, medium-term adaptation of laboratory populations of fruit flies is not primarily driven by new mutations, but rather by changes in the frequency of preexisting alleles.  相似文献   
59.
60.
1. This synthesis examines 35 long‐term (5–35 years, mean: 16 years) lake re‐oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 μg L?1 before loading reduction), subtropical to temperate (latitude: 28–65°), and lowland to upland (altitude: 0–481 m). Shallow north‐temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in‐lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10–15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in‐lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100–150 μg L?1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re‐oligotrophication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号