首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   31篇
  国内免费   12篇
  2014年   5篇
  2013年   16篇
  2012年   12篇
  2011年   22篇
  2010年   30篇
  2009年   39篇
  2008年   18篇
  2007年   26篇
  2006年   14篇
  2005年   15篇
  2004年   10篇
  2000年   4篇
  1999年   4篇
  1998年   9篇
  1997年   17篇
  1996年   16篇
  1995年   13篇
  1994年   9篇
  1993年   6篇
  1992年   7篇
  1991年   13篇
  1990年   15篇
  1989年   8篇
  1988年   8篇
  1987年   12篇
  1986年   6篇
  1985年   4篇
  1983年   6篇
  1981年   4篇
  1979年   4篇
  1978年   4篇
  1977年   7篇
  1976年   5篇
  1974年   4篇
  1973年   11篇
  1972年   9篇
  1971年   9篇
  1968年   4篇
  1959年   15篇
  1958年   25篇
  1957年   12篇
  1956年   17篇
  1955年   12篇
  1954年   7篇
  1953年   5篇
  1952年   8篇
  1951年   10篇
  1950年   14篇
  1949年   10篇
  1948年   9篇
排序方式: 共有613条查询结果,搜索用时 31 毫秒
121.
122.
123.
124.
Differences between species in breeding seasons are thought to be mediated through differences in their reproductive physiology. Little is known about how the timing and duration of gonadal maturation varies between raptor species, how the timing of moult relates to the gonadal cycle, whether the timing and degree of sexual maturation varies between juveniles and adults or whether body condition has a significant effect. To address these questions, data on gonadal size and moult for adults and juveniles of both sexes of three raptor species were extracted from the Predatory Bird Monitoring Scheme (based on birds found dead by members of the public). The three species, Sparrowhawk Accipiter nisus, Kestrel Falco tinnunculus and Barn Owl Tyto alba, have different ecologies – diurnal bird predator, diurnal mammal predator and nocturnal mammal predator, respectively. All are single‐brooded but have different breeding seasons. The duration of gonadal maturation was markedly different between the species. Barn Owls showed the earliest maturation and the latest gonad regression, and Sparrowhawks the latest maturation and earliest gonad regression. Kestrels were intermediate. In males of all species, the testes remained fully mature throughout their respective breeding seasons. In females, the ovaries remained partially mature throughout the breeding season. Moult started slightly earlier in Sparrowhawks than in Kestrels and coincided with gonadal regression in the two species. Although females of the two species started to moult earlier than males, moult duration was similar between the sexes. Barn Owls showed no distinct annual pattern of moult. In juveniles of all three species, the gonads were smaller than in adults throughout spring and started to mature later. Gonad size in birds that had starved tended to be smaller than in birds dying from other causes, but did not influence the difference in gonad mass between adults and juveniles and between seasons. Body condition had no effect on moult. Whilst ecology has led to the evolution of different breeding seasons, differences between species, and between adults and juveniles, are mediated through adaptive differences in their reproductive physiology.  相似文献   
125.
It has been widely argued that the acquisition of novel disease resistance genes by wild host populations following the release of novel pathogen‐resistant plants into agricultural systems could pose a significant threat to non‐target plant communities. However, predicting the magnitude of ecological release in wild plant populations following the removal of disease remains a major challenge. In this paper we report on the second phase of a tiered risk assessment designed to investigate the role of disease on host growth, survival, fecundity and fitness in a model pathosystem (the pasture species Trifolium repens infected with Clover yellow vein virus, ClYVV) and to assess the level of risk posed to at‐risk native plant communities in southeast Australia by newly developed genetically modified and conventionally bred virus‐resistant T. repens genotypes. Multi‐year field experiments conducted in woodland and grassland environments using host‐pathogen arrays derived from 14 ClYVV isolates and 21 T. repens genotypes indicate that viral infection reduces fecundity, growth and survival of wild T. repens plants but that the severity of these effects depends on host tolerance to infection, isolate aggressiveness and specific spatial and temporal environmental conditions. Demographic modelling showed that by reducing host survival and growth, ClYVV also limits the intrinsic population growth rate and niche size of wild T. repens populations. Given the significant fitness cost associated with viral infection we conclude that virus‐resistant T. repens genotypes may pose a threat to some high conservation‐value non‐target ecosystems in SE Australia. We also argue that long‐term, multi‐tiered experiments conducted in a range of controlled and non‐controlled environments are necessary to detect and accurately quantify risks associated with the release of disease‐resistant plants in general.  相似文献   
126.
Understanding why some species coexist and others do not remains one of the fundamental challenges of ecology. Although there is evidence to suggest that closely‐related species are unlikely to occupy the same habitat because of competitive exclusion, there are many cases where closely‐related species do co‐occur. Research comparing sympatric and allopatric populations of co‐occurring species provides a framework for understanding the role of phenotypic diversification in species coexistence. In the present study, we compare phenotypic divergence between sympatric and allopatric populations of the livebearing fish, Poeciliopsis baenschi. We focus on life‐history traits and body shape, comprising two sets of integrated traits likely to diverge in response to varying selective pressures. Given that males and females can express different phenotypic traits, we also test for patterns of divergence among sexes by comparing size at maturity and sexual dimorphism in body shape between males and females in each population type. We take advantage of a natural experiment in western Mexico where, in some locations, P. baenschi co‐occur with a closely‐related species, Poeciliopsis turneri (sympatric populations) and, in other locations, they occur in isolation (allopatric populations). The results obtained in the present study show that sympatric populations of P. baenschi differed significantly in life‐history traits and in body shape compared to their allopatric counterparts. Additionally, males and females showed different responses for size at maturity in sympatric conditions versus allopatric conditions. However, the amount of sexual dimorphism did not differ between sympatric and allopatric populations of P. baenschi. Hence, we conclude that not all traits show similar levels of phenotypic divergence in response to sympatric conditions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 608–618.  相似文献   
127.
ABSTRACT. To investigate the feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense (GenBank accession number=AM408889), we explored the feeding process and the kinds of prey species that P. shiwhaense is able to feed on using several different types of microscopes, including a transmission electron microscope and high‐resolution video‐microscopy. In addition, we measured the growth and ingestion rates of P. shiwhaense on its optimal algal prey Amphidinium carterae as a function of prey concentration. We also measured these parameters for edible prey at a single concentration at which the growth and ingestion rates of P. shiwhaense on A. carterae were saturated. Paragymnodinium shiwhaense feed on algal prey using a peduncle after anchoring the prey by a tow filament. Among the algal prey offered, P. shiwhaense ingested small algal species that had equivalent spherical diameters (ESDs) ≤11 μm (e.g. the prymnesiophyte Isochrysis galbana, the cryptophytes Teleaulax sp. and Rhodomonas salina, the raphidophyte Heterosigma akashiwo, and the dinoflagellates Heterocapsa rotundata and A. carterae). However, it did not feed on larger algal species that had ESDs ≥12 μm (e.g. the dinoflagellates Prorocentrum minimum, Heterocapsa triquetra, Scrippsiella trochoidea, Alexandrium tamarense, Prorocentrum micans, Gymnodinium catenatum, Akashiwo sanguinea, and Lingulodinium polyedrum) or the small diatom Skeletonema costatum. The specific growth rates for P. shiwhaense feeding upon A. carterae increased rapidly with increasing mean prey concentration before saturating at concentrations of ca. 350 ng C/ml (5,000 cells/ml). The maximum specific growth rate (i.e. mixotrophic growth) of P. shiwhaense on A. carterae was 1.097/d at 20 °C under a 14:10 h light–dark cycle of 20 μE/m2/s, while its growth rate (i.e. phototrophic growth) under the same light conditions without added prey was ?0.224/d. The maximum ingestion and clearance rates of P. shiwhaense on A. carterae were 0.38 ng C/grazer/d (5.4 cells/grazer/d) and 0.7 μl/grazer/h, respectively. The calculated grazing coefficients for P. shiwhaense on co‐occurring Amphidinium spp. was up to 0.07/h (i.e. 6.7% of the population of Amphidinium spp. was removed by P. shiwhaense populations in 1 h). The results of the present study suggest that P. shiwhaense can have a considerable grazing impact on algal populations.  相似文献   
128.
Phylogenetic analyses of partial sequences spanning approximately 450 nucleotides near the 5'end of the 18s rDNA strongly support the monophyly of Apogastropoda and its constituent clades, Caenogastropoda and Heterobranchia. Representatives of the architaenioglossan groups Cyclophoroidea, Ampullariidae and Viviparidae invariably emerge within Caenogastropoda in all analyses. While the Cyclophoroidea and Ampullariidae are monophyletic, the varying position of Viviparidae in all outcomes contradicts its hypothesized sister group relationship with Ampullariidae, and thus the monophyly of Ampullarioidea. Because of the position of Viviparidae, Architaenioglossa does not emerge as a clade in any of our analyses. Campanile consistently emerges between Cyclophoroidea and Cerithioidea, or in a clade with Cyclophoroidea and Ampullariidae, a position not predicted by previous morphological studies. Maximum parsimony analyses of sequence data show Caenogastropoda to comprise a series of sequentially diverging higher taxa. However, maximum likelihood analyses as well as maximum parsimony analyses using only trans-versions divide Caenogastropoda into two clades, one containing the architaenioglossan taxa, Campaniloidea and Cerithioidea, the other containing the higher caenogastropod taxa included in Eucaenogastropoda (Haszprunar, 1988) [= Hypsogastropoda (Ponder & Lindberg 1997)l. Denser taxon sampling revealed insertions to be present in the 18s rDNA gene of several caenogastropod taxa. Earlier reports (Harasewych et al. 1997b) of reduced sequence divergence levels in Caenogastropoda are shown to be restricted to Hypsogastropoda. Based on a broader taxonomic sampling, divergence levels within Caenogastropoda are comparable to those found within Heterobranchia.  相似文献   
129.
1. The species composition and spatial distribution of small insects (Hemiptera, Coleoptera, Lepidoptera) and arachnids (Araneae, Opiliones, and Pseudoscorpiones) were investigated in three indigenous, upland grasslands identified as the National Vegetation Classification Festuca–Agrostis–Galium typical subcommunity (code U4a), Festuca–Agrostis–Galium, Vaccinium–Deschampsia subcommunity (code U4e), and Nardus stricta species-poor sub-community (code U5a), on which grazing management was manipulated experimentally. 2. Two hypotheses were tested that predicted arthropod diversity in upland grasslands. The habitat heterogeneity hypothesis predicts that the species number and abundance of arthropods will have an asymptotic relationship with increasing numbers of plant species and greater structural heterogeneity in the vegetation. The symbiosis between patches hypothesis states that the species number and abundance of arthropods will express a unimodal relationship with the grain size of sward patches created by grazing. The sward patches must be large enough to be apparent to, and support populations of, arthropods, but small enough that interspersed tussocks provide shelter from weather and a deterrent to disturbance by grazers. 3. The hypotheses were tested by sampling arthropods from the geometrical patterns represented by the individual tussocks and intermediate sward components of three indigenous grasslands produced by different grazing treatments. Paired samples of arthropods were taken by motorized suction sampler, the first of the pair from the grazed sward and the second, the accumulated samples from the surrounding triad of tussocks (U4a and U5a grasslands) or hummocks (U4e grassland). The paired samples were taken from six randomly-selected locations across both replicates of each of the grazing treatments. 4. Arthropod species composition and abundance were compared between the paired sward and tussock samples and in turn with measures of the vertical and horizontal components of vegetation structure, i.e. the variance in vegetation height per unit area and the area covered by tussock compared with sward. 5. There were consistently more species and a greater abundance of arthropods associated with tussocks than with swards and the average species number and abundance for the combined pair of samples declined with increased grazing pressure. The relationship between vertical and horizontal components of vegetation structure and the species number and abundance of selected arthropods was asymptotic as opposed to unimodal, supporting the habitat heterogeneity hypothesis, rather than the symbiosis between patches hypothesis. 6. Small and relatively sedentary insects and arachnids are more sensitive to grazing intensity and species of grazer in these upland, indigenous grasslands than are larger Coleoptera and Araneae, which respond less directly to varied grazing management. The overall linear reduction of small herbivorous and predatory arthropods with increased grazing intensity was buffered in grasslands with substantial tussock patches.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号