首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1600578篇
  免费   151374篇
  国内免费   2056篇
  1754008篇
  2021年   18249篇
  2019年   16323篇
  2018年   19017篇
  2017年   17818篇
  2016年   29143篇
  2015年   43434篇
  2014年   51519篇
  2013年   77889篇
  2012年   45972篇
  2011年   36729篇
  2010年   46842篇
  2009年   47308篇
  2008年   33960篇
  2007年   32398篇
  2006年   36100篇
  2005年   36946篇
  2004年   36041篇
  2003年   33210篇
  2002年   31176篇
  2001年   46766篇
  2000年   44666篇
  1999年   41415篇
  1998年   27209篇
  1997年   27095篇
  1996年   26340篇
  1995年   24495篇
  1994年   24232篇
  1993年   23478篇
  1992年   35861篇
  1991年   34286篇
  1990年   33014篇
  1989年   33471篇
  1988年   30711篇
  1987年   29207篇
  1986年   27791篇
  1985年   29329篇
  1984年   27473篇
  1983年   24245篇
  1982年   22982篇
  1981年   21779篇
  1980年   20555篇
  1979年   23886篇
  1978年   21481篇
  1977年   20176篇
  1976年   19209篇
  1975年   19513篇
  1974年   20241篇
  1973年   20461篇
  1972年   17671篇
  1971年   16125篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A model for lateral inhibition is presented in the context of the auditory channel. The mechanical analyzing system of the inner ear cannot alone account for the frequency resolution of hearing. Some additional mechanism, possibly lateral inhibition located in the auditory neural network, is needed to achieve the frequency selectivity observed in electrophysiological and psychoacoustical experiments. In a computer simulation study, the shape of an ideal lateral inhibition function was obtained. Such a function is applicable to all sensory modalities. In hearing, this function permits the sharpest possible frequency resolution as it can completely remove the frequency desharpening effect of the mechanical properties of the basilar membrane. In vision, it can compensate for abberations caused by the imperfections of the optical system of the eye.An expanded version of a paper presented at the XIth Intenational Congress on Acoustics, Paris, 1983  相似文献   
992.
993.
Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks.  相似文献   
994.
995.
Summary The conditions required for the production of a polylysine-coated gold (PL-G) complex, which shows optimal sensitivity for the demonstration of tissue anionic sites, expressed under different conditions of pH have been investigated. Problems encountered with this complex have been compared with those found with other methods of conjugation of polylysine to colloidal gold. The performance of a bovine serum albumin (BSA)-stabilized PL-G complex was examined against other PL-G conjugates, including complexes that are commercially available, for the detection of heterogeneous glomerular anionic site populations, expressed at pH 2.5 and pH 7.0.  相似文献   
996.
997.
The nitrogen-15 chemical shift of the N1 (tau)-nitrogen of 15N-labeled histidine and the half-height line widths of proton-coupled resonances of the delta- and omega,omega'-nitrogens of 15N-labeled arginine and of the alpha-nitrogens of 15N-labeled alanine and proline were measured in intact mycelia of Neurospora crassa to obtain to estimates of intracellular pH. For intracellular 15N-labeled histidine, the N1 (tau)-nitrogen chemical shift was 200.2 ppm. In vitro measurements showed that the chemical shift was slightly affected by the presence of phosphate, with which the basic amino acids may be associated in vivo. These considerations indicate a pH of 5.7-6.0 for the environment of intracellular histidine. The half-height line widths of the delta- and omega,omega'-nitrogens of [15N]arginine were 15 and 26 Hz, respectively. In vitro studies showed that these line widths also are influenced by the presence of phosphate, and, after suitable allowance for this, the line widths indicate pH 6.1-6.5 for intracellular arginine. The half-height line widths for intracellular alanine and proline were 17 and 12 Hz, respectively, which are consistent with an intracellular pH of 7.1-7.2. Pools of histidine and arginine are found principally in the vacuole of Neurospora, most likely in association with polyphosphates. Proline and alanine are cytoplasmic. The results reported here are consistent with these localizations and indicate that the vacuolar pH is 6.1 +/- 0.4 while the cytoplasmic pH is 7.15 +/- 0.10. Comparisons of these estimates with those obtained by other techniques and their implications for vacuolar function are discussed.  相似文献   
998.
999.
P W Tas  H G Kress  K Koschel 《FEBS letters》1985,182(2):269-272
We have investigated the effect of pharmacological agents on [14C]guanidinium ion influx through sodium channels in C6 rat glioma and N18 mouse neuroblastoma cells. The sodium channels of the N18 cells can be activated by aconitine alone, indicating that they are voltage-dependent channels. In contrast, sodium channels in the C6 cells require the synergistic action of aconitine and scorpion toxin for activation and are therefore characterized as so-called silent channels. The general anesthetic halothane used at clinical concentrations, specifically inhibited the ion flux through the silent sodium channel of C6 rat glioma cells. The voltage-dependent channels of the N18 cells were insensitive to halothane at the concentrations tested.  相似文献   
1000.
R W Oberfelder  L L Lee  J C Lee 《Biochemistry》1984,23(17):3813-3821
The mechanism of allosteric regulation of rabbit muscle pyruvate kinase (PK) was examined in the presence of the allosteric inhibitor phenylalanine (Phe). Steady-state kinetic, equilibrium binding, and structural studies were conducted to provide a broad data base to establish a reasonable model for the interactions. Phe was shown to induce apparent cooperativity in the steady-state kinetic measurements at pH 7.5 and 23 degrees C. The apparent Km for phosphoenolpyruvate was shown to increase with increasing Phe concentrations. These results imply that Phe reduces the affinity of PK for phosphoenolpyruvate. This conclusion was substantiated by equilibrium binding studies which yielded association constants of phosphoenolpyruvate as a function of Phe concentration. The binding constant of Phe was also determined at pH 7.0 and 23 degrees C. The effect of ligands on the hydrodynamic properties of PK was monitored by difference sedimentation velocity, sedimentation velocity, and equilibrium experiments. The results showed that PK remains tetrameric both in the presence and in the absence of Phe. However, Phe induces a small decrease in the sedimentation coefficient of the enzyme; hence, it suggests a loosening of the protein structure. The accessibility of the sulfhydryl residues of the enzyme also increases in the presence of Phe. Furthermore, the Phe-induced conformational change was approximately 90% complete when only 25% of the binding sites were saturated. This result suggested that the regulatory behavior of PK might satisfactorily be described by the two-state model of Monod-Wyman-Changeux [Monod, J., Wyman, J., & Changeux, J.-P. (1965) J. Mol. Biol. 12, 88-118].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号