全文获取类型
收费全文 | 1179611篇 |
免费 | 121479篇 |
国内免费 | 2130篇 |
专业分类
1303220篇 |
出版年
2018年 | 20321篇 |
2017年 | 18641篇 |
2016年 | 20426篇 |
2015年 | 20166篇 |
2014年 | 23202篇 |
2013年 | 32557篇 |
2012年 | 40202篇 |
2011年 | 48061篇 |
2010年 | 35317篇 |
2009年 | 30002篇 |
2008年 | 41016篇 |
2007年 | 43142篇 |
2006年 | 32122篇 |
2005年 | 31069篇 |
2004年 | 31378篇 |
2003年 | 30022篇 |
2002年 | 28924篇 |
2001年 | 48586篇 |
2000年 | 48547篇 |
1999年 | 38799篇 |
1998年 | 14336篇 |
1997年 | 14626篇 |
1996年 | 13850篇 |
1995年 | 13034篇 |
1994年 | 12561篇 |
1993年 | 12460篇 |
1992年 | 32181篇 |
1991年 | 31412篇 |
1990年 | 30608篇 |
1989年 | 29777篇 |
1988年 | 27725篇 |
1987年 | 26112篇 |
1986年 | 24333篇 |
1985年 | 24237篇 |
1984年 | 20168篇 |
1983年 | 17212篇 |
1982年 | 13104篇 |
1981年 | 11804篇 |
1980年 | 10951篇 |
1979年 | 18609篇 |
1978年 | 14712篇 |
1977年 | 13189篇 |
1976年 | 12195篇 |
1975年 | 13716篇 |
1974年 | 14744篇 |
1973年 | 14597篇 |
1972年 | 13258篇 |
1971年 | 12208篇 |
1970年 | 10247篇 |
1969年 | 9929篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
P T M?nnist? 《Medical biology》1980,58(6):310-318
The subcellular distribution of the TRH-like immunoreactivity in the rat hypothalamus and brain was studied. In differential centrifugation, the 900 g for 10 min supernatant (S1) of the hypothalamus or brain contained 61--79% of the total TRH. At 11,000 g for 20 min, 51--73% of the TRH in S1 was sedimented. When the hypothalamic S1 was fractioned under non-equilibrium conditions at 25 degrees C, two populations of TRH-containing particles were observed in several types of continuous linear density gradients. Metrizamide and sucrose gradients affected TRH-assay. TRH-particles were very light in Percol-gradients. Isotonic dextran 40,000-sucrose gradients gave the most reproducible results. In these gradients, the large TRH-particles (35%) equilibrated at 1.055--1.060 kg/l and the small ones (23%) at 1.041--1.047 kg/l. Working at 4 degrees C decreased the amount of large TRH-particles. The apparently larger particles contained cytoplasmic and mitochondrial enzymes and were sensitive to hypoosmotic shock like synaptosomes. Electron micrographs confirmed that these particles were synaptosomes. The true nature of the small particles remained unclear but morphologically a part of them were also synaptosomes. Treatment of the animals with reserpine (10 mg/kg i.p., 24 h), with 6-hydroxydopamine (100 microgram/rat i.c.v.) or with 5,7-dihydroxytryptamine (200 microgram/rat i.c.v.) did not affect significantly TRH-recovery or distribution in the hypothalamus. 相似文献
993.
994.
BALB/c mice were immunized with syngeneic anti-HLA class I monoclonal antibodies. The latter included the anti-HLA-A2, A28 monoclonal antibody (MoAb) CR11-351, the MoAb Q6/64 to a determinant restricted to HLA-B antigens and the MoAb CR10-215 and CR11-115 to the same (or spatially close) monomorphic determinant. Anti-idiotypic antibodies could be detected in bleedings obtained 3 days after the first booster, increased in titer in bleedings obtained after the second booster, and persisted at high levels in subsequent bleedings. The four anti-HLA class I MoAb did not differ in their ability to elicit syngeneic anti-idiotypic antibodies. Cross-blocking studies with a panel of anti-HLA class I, anti-HLA class II, and anti-human melanoma-associated antigen (MAA) MoAb showed that the anti-MoAb CR10-215 and anti-MoAb CR11-115 antisera contain only antibodies to private idiotopes, whereas the anti-HLA MoAb CR11-351 and anti-MoAb Q6/64 antisera also contain antibodies to public idiotopes. The latter are expressed by the anti-HLA class I MoAb CR11-351, Q1/28, Q6/64, and 6/31, and by the anti-HLA class II MoAb Q5/6, Q5/13, 127, and 441. Public idiotopes were not detected on the nine anti-MAA MoAb tested. Public idiotopes do not interfere with the binding of anti-HLA MoAb with the corresponding antigenic determinants. On the other hand private idiotopes are located within the antigen-combining site, because anti-idiotypic antisera specifically inhibit the binding of the corresponding immunizing anti-HLA class I MoAb to cultured human lymphoid cells in a dose-dependent manner. Analysis by isoelectric focusing of the anti-HLA class I MoAb antisera showed that the spectrotype of the anti-MoAb CR11-351 antiserum comprises four components that focus in the pH 6.9 to 6.2 range, the spectrotype of anti-MoAb Q6/64 antiserum comprises three components that focus in the pH 6.5 to 6.1 range, the spectrotype of the anti-MoAb CR10-215 antiserum comprises three components that focus in the pH 6.4 to 6.1 range, and the spectrotype of the anti-MoAb CR11-115 antiserum comprises three components that focus in the pH 6.6 to 6.4 range. 相似文献
995.
996.
Structure of the lysosomal sphingolipid activator protein 1 by homology with influenza virus neuraminidase 总被引:1,自引:0,他引:1
M Potier 《Biochemical and biophysical research communications》1988,155(1):32-37
The sphingolipid activator protein 1 (SAP-1) increases the rate of hydrolysis of sphingolipids in the lysosome by apparently bringing together the substrate and the corresponding hydrolytic enzyme. This implies specific recognition of both the substrate and enzyme by SAP-1. However, binding domains in SAP-1 and recognition mechanisms involved are unknown. Amino acid sequence comparison of SAP-1 with influenza virus neuraminidase (EC 3.2.1.18, FLU NA) indicates that functional amino acid residues in or near the sialic acid binding site of FLU NA are also found at equivalent positions in the first 48 N-terminal amino acids of SAP-1. This region of homology allows to propose folding of the SAP-1 polypeptide chain by comparison with known crystallographic structure of FLU NA and identify a potential domain for lysosomal enzyme recognition through sialic acid binding. There is also a region of 10 amino acid residues near the C-terminal end of SAP-1 which has a strong propensity to form an alpha-helix with amphiphilic properties of lipid-binding helices. This domain in SAP-1 is probably responsible for the lipid(substrate)-binding function of SAP-1. 相似文献
997.
C D Wolleben R K McPherson J Rulfs G L Johnson T B Miller 《Biochimica et biophysica acta》1987,928(1):98-106
The phosphorylation of glycogen synthase has been studied in freshly isolated adult rat cardiomyocytes. Six peaks of 32P-labeled tryptic peptides are recovered via C-18 high performance liquid chromatography (HPLC) when synthase is immunoprecipitated from 32P-labeled cardiomyocytes and digested with trypsin. When epinephrine treated cells are used as a source of enzyme, the same HPLC profile is obtained with a dramatic enhancement of 32P recovered in two of the HPLC peaks. In vitro phosphorylation of rat heart synthase by cAMP-dependent protein kinase stimulates the conversion of synthase from the I to the D form and results in the recovery of the same tryptic peptides from the C-18 as is the case for synthase derived from cardiomyocytes. Treatment of cAMP-dependent kinase phosphorylated synthase with protein phosphatase-1 leads to a reactivation of the enzyme and a dephosphorylation of the same tryptic peptides that are selectively phosphorylated in epinephrine treated cardiomyocytes. These results are discussed in relation to hormonal control of glycogen metabolism in cardiac tissue. 相似文献
998.
Inositol lipids and cell proliferation 总被引:21,自引:0,他引:21
M J Berridge 《Biochimica et biophysica acta》1987,907(1):33-45
999.
Thomas M. Lincoln Stanley L. Keely 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,676(2):230-244
An assay method based on the ability of high concentrations of Mg2+ to stimulate phosphorylation of histone in the presence of low concentrations of ATP was developed for the measurement of cyclic GMP-dependent protein kinase activity ratios (activity -cyclic GMP/activity + cyclic GMP). In tissues which contain only trace amounts of cyclic GMP-dependent protein kinase, the basal activity ratios were high due to interference from a cyclic nucleotide-independent protein kinase. In order to study the regulation of the cardica cyclic GMP-dependent protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal or elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated witth the acetylcholine-induced protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated with the acetylcholine-induced increase in cyclic GMP and the cyclic GMP-dependent protein kinase activity ratio was a reduction in the force of contraction. In contrast, nitroprusside produced little or no increase in the cyclic GMP-dependent protein kinase activity ratio despite increasing the level of cyclic GMP 8–10-fold. Nitroprusside also had no effect on contractile force. In combination, nitroprusside and acetylcholine produced additive effects on cyclic GMP levels, but protein kinase activation and force of contraction were similar to those seen with acetylcholine alone. The results suggest that the cyclic GMP produced by acetylcholine in the rat heart is coupled to activation of the cyclic GMP-dependent protein kinase, while that produced by nitroprusside is not. 相似文献
1000.
The present study has shown that on the level of the parasitic system the epidemic process is a biological system, wherein the host population serves as the internal regulator, the mechanism of transmission serves as the external regulator and the parasite population, as the regulated object. The biological regulating mechanisms of the epidemic process have fundamental differences in the groups of infectious with various mechanisms of transmission, and the specific nature of the mechanism of transmission determines the peculiar features of the biological mechanism which governs the self-regulation of the epidemic process. In contrast, on a higher level of the organization of the epidemic process, i. e. on the level of the socio-ecological system, the epidemic process is a biosocial system, wherein the human society serves as the regulator, the parasitic system serves as the regulated object and the mechanism of transmission plays the role of the filter which determines the scope of social factors, most important in the regulation of the epidemic process in a given infection. The spontaneous regulation of the epidemic process is the freed forward channel from the regulator to the regulated object, and the controlled regulation is the feedback channel. 相似文献