首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3299篇
  免费   227篇
  国内免费   1篇
  3527篇
  2024年   4篇
  2023年   12篇
  2022年   42篇
  2021年   58篇
  2020年   38篇
  2019年   45篇
  2018年   90篇
  2017年   63篇
  2016年   120篇
  2015年   160篇
  2014年   218篇
  2013年   240篇
  2012年   292篇
  2011年   273篇
  2010年   172篇
  2009年   163篇
  2008年   202篇
  2007年   189篇
  2006年   179篇
  2005年   143篇
  2004年   184篇
  2003年   117篇
  2002年   106篇
  2001年   107篇
  2000年   70篇
  1999年   57篇
  1998年   16篇
  1997年   21篇
  1996年   13篇
  1995年   12篇
  1994年   5篇
  1993年   9篇
  1992年   16篇
  1991年   17篇
  1990年   22篇
  1989年   15篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   7篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有3527条查询结果,搜索用时 15 毫秒
61.

Purpose

To investigate whether corneal thickness parameters measured by optical coherence tomography (OCT), such as central corneal thickness (CCT), central corneal stromal thickness (CCST), and central corneal epithelial thickness (CCET), influence the intraocular pressure (IOP) difference measured by Goldmann applanation tonometry (GAT) and non-contact tonometry (NCT).

Methods

In total, 50 eyes from 50 subjects without glaucomatous defects were included in this retrospective, cross-sectional study. We measured IOP using GAT and NCT and calculated the difference between the two methods. CCT was measured by a Cirrus HD-OCT device using anterior segment imaging. The basement membrane of the epithelium, which was seen as a high-reflection line in the OCT image, was taken as a reference line to measure CCST and CCET.

Results

The mean IOP measured by GAT and NCT was 16.7 ± 3.0 and 18.1 ± 3.8 mmHg, respectively. The mean IOP difference was 1.5 ± 1.7 mmHg, and the IOP measured by NCT was 8.4% ± 11.3% higher than that measured by GAT. The CCET and CCST were 57.9 ± 5.6 and 501.7 ± 33.8 μm, respectively. CCT showed a positive correlation with both GAT IOP (r = 0.648, P < 0.001) and NCT IOP (r = 0.676, P < 0.001). Although CCST showed a significant correlation with GAT IOP and NCT IOP, CCET did not. The difference between GAT IOP and NCT IOP increased with CCT (r = 0.333, P = 0.018), and CCET was positively correlated with the IOP difference between GAT and NCT (r = 0.435, P = 0.002).

Conclusions

IOP increased with greater CCT, and CCST seemed to have a more important role than CCET. CCET also increased with greater CCT, and this may be a possible explanation for the increasing difference in IOP between GAT and NCT with increasing CCT.  相似文献   
62.
63.
64.
Cho  Bumrae  Lee  Eun-Jin  Ahn  Sun Mi  Kim  Ghangyong  Lee  Sang Hoon  Ji  Dal-Young  Kang  Jung-Taek 《Transgenic research》2019,28(5-6):549-559
Transgenic Research - Islet xenotransplantation is a promising treatment for type I diabetes. Numerous studies of islet xenotransplantation have used pig-to-nonhuman primate transplantation models....  相似文献   
65.
Indirubin-based compounds affect diverse biological processes, such as inflammation and angiogenesis. In this study, we tested a novel indirubin derivative, LDD-1819 (2-((((2Z,3E)-5-hydroxy-5′-nitro-2′-oxo-[2,3′-biindolinylidene]-3-ylidene)amino)oxy)ethan-1-aminium chloride) for two major biological activities: cell plasticity and anti-cancer activity. Biological assays indicated that LDD-1819 induced somatic cell plasticity. LDD-1819 potentiated myoblast reprogramming into osteogenic cells and fibroblast reprogramming into adipogenic cells. Interestingly, in an assay of skeletal muscle dedifferentiation, LDD-1819 induced human muscle cellularization and blocked residual proliferative activity to produce a population of mononuclear refractory cells, which is also observed in the early stages of limb regeneration in urodele amphibians. In cancer cell lines, LDD-1819 treatment inhibited cell invasion and selectively induced apoptosis compared to normal cells. In an animal tumor xenograft model, LDD-1819 reduced human cancer cell metastasis in vivo at doses that did not produce toxicity. Biochemical assays showed that LDD-1819 possessed inhibitory activity against glycogen synthase kinase-3β, which is linked to cell plasticity, and aurora kinase, which regulates carcinogenesis. These results indicate that novel indirubin derivative LDD-1819 is a dual inhibitor of glycogen synthase kinase-3β and aurora A kinase, and has potential for development as an anti-cancer drug or as a reprogramming agent for cell-therapy based approaches to treat degenerative diseases.  相似文献   
66.
67.
Ahn S  Moniot S  Elias M  Chabriere E  Kim D  Scott K 《FEBS letters》2007,581(18):3455-3460
A recombinant DING protein from Pseudomonas fluorescens has been previously shown to have a phosphate-binding site, and to be mitogenic for human cells. Here we report the three-dimensional structure of the protein, confirming a close similarity to the "Venus flytrap" structure seen in other human and bacterial phosphate-binding proteins. Site-directed mutagenesis confirms the role of a key residue involved in phosphate binding, and that the mitogenic activity is not dependent on this property. Deletion of one of the two hinged domains that constitute the Venus flytrap also eliminates phosphate binding whilst enhancing mitogenic activity.  相似文献   
68.
Neuromechanics: an integrative approach for understanding motor control   总被引:3,自引:0,他引:3  
Neuromechanics seeks to understand how muscles, sense organs,motor pattern generators, and brain interact to produce coordinatedmovement, not only in complex terrain but also when confrontedwith unexpected perturbations. Applications of neuromechanicsinclude ameliorating human health problems (including prosthesisdesign and restoration of movement following brain or spinalcord injury), as well as the design, actuation and control ofmobile robots. In animals, coordinated movement emerges fromthe interplay among descending output from the central nervoussystem, sensory input from body and environment, muscle dynamics,and the emergent dynamics of the whole animal. The inevitablecoupling between neural information processing and the emergentmechanical behavior of animals is a central theme of neuromechanics.Fundamentally, motor control involves a series of transformationsof information, from brain and spinal cord to muscles to body,and back to brain. The control problem revolves around the specifictransfer functions that describe each transformation. The transferfunctions depend on the rules of organization and operationthat determine the dynamic behavior of each subsystem (i.e.,central processing, force generation, emergent dynamics, andsensory processing). In this review, we (1) consider the contributionsof muscles, (2) sensory processing, and (3) central networksto motor control, (4) provide examples to illustrate the interplayamong brain, muscles, sense organs and the environment in thecontrol of movement, and (5) describe advances in both roboticsand neuromechanics that have emerged from application of biologicalprinciples in robotic design. Taken together, these studiesdemonstrate that (1) intrinsic properties of muscle contributeto dynamic stability and control of movement, particularly immediatelyafter perturbations; (2) proprioceptive feedback reinforcesthese intrinsic self-stabilizing properties of muscle; (3) controlsystems must contend with inevitable time delays that can simplifyor complicate control; and (4) like most animals under a varietyof circumstances, some robots use a trial and error processto tune central feedforward control to emergent body dynamics.  相似文献   
69.
70.
Molecular and Cellular Biochemistry - Electron transfer occurs through heme-Fe across the cytochrome c protein. The current models of long range electron transfer pathways in proteins include...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号