首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   17篇
  2022年   1篇
  2021年   7篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   11篇
  2014年   10篇
  2013年   5篇
  2012年   17篇
  2011年   27篇
  2010年   12篇
  2009年   13篇
  2008年   15篇
  2007年   25篇
  2006年   17篇
  2005年   24篇
  2004年   25篇
  2003年   14篇
  2002年   23篇
  2001年   8篇
  2000年   7篇
  1999年   9篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有313条查询结果,搜索用时 31 毫秒
41.
Yeo M  Kim DK  Park HJ  Oh TY  Kim JH  Cho SW  Paik YK  Hahm KB 《Proteomics》2006,6(4):1158-1165
Though ulcerative colitis (UC)-associated colon cancer develops from dysplastic lesions caused by chronic inflammation, the specific mechanistic link between chronic inflammation and carcinogenesis in colon has not been integrated into molecular understanding. We therefore established an experimental animal model for colitic cancer, and used proteomic analysis, based on 2-DE and MALDI-TOF MS, to identify proteins involved in colitic cancer. In our model, 6-week-old C57BL/6J mice were exposed to 15 cycles of dextran sodium sulfate (DSS), with each cycle consisting of 0.7% DSS for 1 week followed by distilled water for 10 days. Colorectal tumors developed in 22 of 24 mice (91.6%), with a tumor multiplicity of 1.727 per tumor-bearing mouse. Comparative 2-DE analysis showed that 38 protein spots were differentially expressed in colon tumors and normal colon. We identified 27 of these proteins, including GRP94, HSC70, enolase, prohibitin, and transgelin. The reduction of transgelin expression in mouse colon tumors was confirmed by Western blotting and immunohistochemistry. We also found that transgelin expression was significantly reduced in human colon tumors compared with adjacent nontumorous tissues. In conclusion, these results suggest that loss of transgelin could be a candidate for biomarker of repeated colitis-associated colon cancer.  相似文献   
42.
To investigate the antibiotic activity and synergistic effect, analogues were designed to increase not only net positive charge by Lys-substitution but also hydrophobic helix region by Leu-substitution from CA (1-8)-MA (1-12) hybrid peptide (CA-MA). In particular, CA-MA analogue P5 (P5), designed by flexible region (GIG-->P)-substitution, Lys- (positions 4, 8, 14, 15) and Leu- (positions 5, 6, 12, 13, 16, 17, 20) substitutions, showed potent antibacterial activity in minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC) without having hemolytic activity. In addition, P5 and chloramphenicol has potent synergistic effect against tested cell lines. As determined by propidium iodide (PI) staining, flow cytometry showed that P5 plus chloramphenicol-treated cells had higher fluorescence intensity than untreated, P5- and chloramphenicol-treated cells. The effect on plasma membrane was examined by investigating the transmembrane potential depolarizing experiments of S. aureus with P5 and chloramphenicol. The result showed that the peptide exerts its antibacterial activity by acting on the plasma membrane. Furthermore, P5 caused significant morphological alterations of S. aureus, as shown by scanning electron microscopy. Our results suggest that peptide P5 is an excellent candidate as a lead compound for the development of novel anti-infective agents and synergistic effects with conventional antibiotic agents but lack hemolytic activity.  相似文献   
43.
The natural history of hepatitis B virus (HBV) infection is probably related to host immune factors. Interferon-γ (IFN-γ) plays significant roles in immune defense. This study was undertaken to investigate the association between HBV infection and single nucleotide polymorphisms (SNPs) of IFN-γ, IFN-γ receptor (IFNGR)-1 and 2, and interferon regulatory factor (IRF)-1 genes. Between March 2002 and December 2002, 614 Korean patients were enrolled in two different groups: an HBV clearance group (n = 201), who were hepatitis B surface antigen (HBsAg) negative with antibodies to HBsAg and hepatitis B core antigen, and an HBV persistence group (n = 413), who were repeatedly HBsAg positive. We assessed polymorphisms in the IFN-γ gene at position +874, in the IFNGR-1 gene at positions −56 and +95, in the IFNGR-2 gene at the second position of codon 64 (Gln64Arg), and in the IRF-1 gene promoter (−410, −388), and the genotype distributions of the HBV clearance and persistence groups were compared. On the basis of unconditional logistic regression analysis with adjustment for age and sex, no statistically significant association with susceptibility to persistent HBV infection was observed with the IFN-γ, IFNGR-1 and 2, and IRF-1 gene polymorphisms under the codominant, dominant, and recessive models.  相似文献   
44.
Yang ST  Jeon JH  Kim Y  Shin SY  Hahm KS  Kim JI 《Biochemistry》2006,45(6):1775-1784
Cathelicidins are essential components of the innate immune system of mammals, providing them a weapon against microbial invasion. PMAP-23 adopting a helix-hinge-helix structure with a central PXXP motif is a member of the cathelicidin family and has potent killing activities against a broad spectrum of microbial organisms. Although the antimicrobial effect of PMAP-23 is believed to be mediated by membrane disruption, many details of this event remain unclear. Here, we try to characterize the interaction between PMAP-23 and membrane phospholipids, focusing on the function of the central PXXP motif. PMAP-PA, in which the Pro residues were substituted by Ala, had significantly more alpha-helical content than PMAP-23, but was less amphipathic and more damaging to human erythrocytes and zwitterionic liposomes. The observed differences in the structures and biological activities of PMAP-23 and PMAP-PA confirmed the functional importance of the central hinge PXXP motif, which enables PMAP-23 to adopt a well-defined amphipathic conformation along its entire length and to have selective antimicrobial activity. CD and Trp fluorescence studies using fragments corresponding to the two helical halves of PMAP-23 revealed that the N-terminal half binds to anionic phospholipids and is more stable than the C-terminal half. In addition, Trp fluorescence quench analyses revealed that the C-terminal helix inserts more deeply into the hydrophobic region of the membrane than the N-terminal helix. Finally, observations made using biosensor technology enabled us to distinguish between the membrane binding and insertion steps, substantiating a proposed kinetic mode of the peptide-membrane interaction in which PMAP-23 first attaches to the membrane via the N-terminal amphipathic helix, after which bending and/or swiveling of the PXXP motif enables insertion of the C-terminal helix into the lipid bilayer.  相似文献   
45.
Potide-G, a small (5578.9 Da) antimicrobial peptide, was isolated from potato tubers (Solanum tuberosum L. cv. Golden Valley) through extraction of the water-soluble fraction, dialysis, ultrafiltration and DEAE-cellulose and C18 reverse-phase high performance liquid chromatography. This antimicrobial peptide was heat-stable and almost completely suppressed the proteolytic activity of trypsin, chymotrypsin and papain, with no hemolytic activity. In addition, potide-G potently inhibited growth of a variety of bacterial (Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Clavibacter michiganense subsp. michiganinse) and fungal (Candida albicans and Rhizoctonia solani) strains. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that the N-terminal sequence (residues from 1 to 11) of the protein is identical to that of potato proteinase inhibitor, a member of the Kunitz superfamily. And like other members of this class of protease inhibitor, potide-G may have a number of beneficial and therapeutic uses.  相似文献   
46.
47.
S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulation of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-α, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.  相似文献   
48.
The lipopeptaibol trichogin GA IV is a natural, non-ribosomally synthesized, antimicrobial peptide remarkably resistant to the action of hydrolytic enzymes. This feature may be connected to the multiple presence in its sequence of the non-coded residue α-aminoisobutyric acid (Aib), which is known to be responsible for the adoption of particularly stable helical structures already at the level of short peptides. To investigate the role of Aib residues on the 3D-structure and bioactivity of trichogin GA IV, we synthesized and fully characterized four analogs where one or two Aib residues are replaced by L-Leu. Our extensive conformational studies (including an X-ray diffraction analysis) and biological assays performed on these analogs showed that the Aib to L-Leu replacements do not affect the resistance to proteolysis, but modulate the bioactivity of trichogin GA IV in a 3D-structure related manner.  相似文献   
49.
Plant growth promoting rhizobacteria Ochrobactrum lupini KUDC1013 and Novosphingobium pentaromativorans KUDC1065 isolated from Dokdo Island, S. Korea are capable of eliciting induced systemic resistance (ISR) in pepper against bacterial spot disease. The present study aimed to determine whether plant growth-promoting rhizobacteria (PGPR) strains including strain KUDC1013, strain KUDC1065, and Paenibacillus polymyxa E681 either singly or in combinations were evaluated to have the capacity for potential biological control and plant growth promotion effect in the field trials. Under greenhouse conditions, the induced systemic resistance (ISR) effect of treatment with strains KUDC1013 and KUDC1065 differed according to pepper growth stages. Drenching of 3-week-old pepper seedlings with the KUDC-1013 strain significantly reduced the disease symptoms. In contrast, treatment with the KUDC1065 strain significantly protected 5-week-old pepper seedlings. Under field conditions, peppers treated with PGPR mixtures containing E681 and KUDC1013, either in a two-way combination, were showed greater effect on plant growth than those treated with an individual treatment. Collectively, the application of mixtures of PGPR strains on pepper might be considered as a potential biological control under greenhouse and field conditions.  相似文献   
50.
Chitosan, a cationic polysaccharide, has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. The antifungal activity and mechanism of action of low molecular weight water-soluble chitosan (LMWS-chitosan) were studied in fungal cells and vesicles containing various compositions of fungal lipids. LMWS-chitosan showed strong antifungal activity against various pathogenic yeasts and hyphae-forming fungi but no hemolytic activity or cytotoxicity against mammalian cells. The degree of calcein leakage was assessed on the basis of lipid composition (PC/CH; 10:1, w/w). Our result showing that LMWS-chitosan interacts with liposomes demonstrated that chitosan induces leakage from zwitterionic lipid vesicles. Confocal microscopy revealed that LMWS-chitosan was located in the plasma membrane. Finally, scanning electron microscopy revealed that LMWS-chitosan causes significant morphological changes on fungal surfaces. Its potent antibiotic activity suggests that LMWS-chitosan is an excellent candidate as a lead compound for the development of novel anti-infective agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号