首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5541篇
  免费   388篇
  国内免费   4篇
  2024年   1篇
  2023年   25篇
  2022年   42篇
  2021年   116篇
  2020年   87篇
  2019年   111篇
  2018年   183篇
  2017年   134篇
  2016年   217篇
  2015年   363篇
  2014年   426篇
  2013年   460篇
  2012年   508篇
  2011年   462篇
  2010年   305篇
  2009年   286篇
  2008年   381篇
  2007年   353篇
  2006年   278篇
  2005年   225篇
  2004年   279篇
  2003年   210篇
  2002年   168篇
  2001年   63篇
  2000年   43篇
  1999年   51篇
  1998年   21篇
  1997年   23篇
  1996年   17篇
  1995年   16篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   13篇
  1990年   5篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有5933条查询结果,搜索用时 15 毫秒
31.
Anaerobic bioreactors supplemented with membrane technology have become quite popular, owing to their favorable energy recovery characteristics. In this study, a lab-scale anaerobic Membrane Bioreactor (AnMBR) was assessed in experimental treatments of pre-settled dilute municipal wastewater obtained from a full-scaled wastewater treatment plant. The MBR system was operated in continuous flow mode for 440 days. To evaluate the performance of the AnMBR under various loading rates, the hydraulic retention time (HRT) was reduced in a stepwise manner (from 2 to 0.5 days). Afterward, the mixed liquor suspended solids (MLSS) were reduced from 7,000 to 3,000 mg/L in increments of 1,000 mg/L, resulting in a decrease in solids retention time (SRT) at a constant HRT of 1.0 day. The soluble chemical oxygen demand (SCOD) concentration in the feed varied between 38 and 131 mg/L, whereas the average permeate SCOD ranged between 18 and 37 mg/L, reflecting excellent effluent quality. The AnMBR performance in terms of COD removal proved stable, despite variations in influent characteristics and HRT and SRT changes. The concentration of extracellular polymeric substance (EPS) was reduced with decreases in HRT from 42 to 22 mg VS/mg of MLSS, thereby indicating that the increased biomass concentration biodegraded the EPS at lower HRTs. AnMBR is, therefore, demonstrably a feasible option for the treatment of dilute wastewater with separate stage nitrogen and phosphorus removal processes.  相似文献   
32.
The purpose of the current study was to investigate whether or not the FABP2 gene polymorphism modulated obesity indices, hemodynamic factor, blood lipid factor, and insulin resistance markers through 12-week aerobic exercise training in abdominal obesity group of Korean mid-life women. A total of 243 abdominally obese subjects of Korean mid-life women voluntarily participated in aerobic exercise training program for 12 weeks. Polymerase Chain Reaction with Restriction Fragment Length Polymorphism (PCR-RFLP) assay was used to assess the FABP2 genotype of the participants (117 of AA homozygotes, 100 of AT heterozygotes, 26 of TT homozygotes). Prior to the participation of the exercise training program, baseline obesity indices, hemodynamic factor, blood lipid factor, and insulin resistance markers were measured. All the measurements were replicated following the 12-week aerobic exercise training program, and then the following results were found. After 12-week aerobic exercise training program, wild type (Ala54Ala) and mutant type (Ala54Thr+Thr54Thr) significantly decreased weight (P > .001), BMI (P > .001), %bf (P > .001), waist circumference (P > .001), WHR (P > .001), muscle mass (wild type p < .022; mutant type P > .001), RHR (P > .001), viseceral adipose area (wild type p < .005; mutant type P > .001), subcutaneous area (P > .001), insulin (wild type p < .005; mutant type P > .001) and significantly increased VO2max (P > .001). And wild type significantly decresed NEFA (P > .05), glucose (P > .05), OGTT 120min glucose (P > .05) and significantly increased HDLC (p > .005). Mutant type significantly decreased SBP (P > .001), DBP (P > .01), TC (P > .01), LPL (P > .05), LDL (P > .001), HOMA index (P > .01). The result of the present study represents that regular aerobic exercise training may beneficially prevent obesity index, blood pressure, blood lipids and insulin resistance markers independent of FABP Ala54Thr wild type and mutant type.  相似文献   
33.
Food Biophysics - Caffeic acid phenethyl ester (CAPE) has high cytotoxicity against various cancer cells but has low water solubility and poor bioavailability. The objective of this work was to...  相似文献   
34.
Amyotrophic lateral sclerosis (ALS) is a disorder that affects motor neurons in motor cortex and spinal cord, and the degeneration of both neuronal populations is a critical feature of the disease. Abnormalities in protein homeostasis (proteostasis) are well established in ALS. However, they have been investigated mostly in spinal cord but less so in motor cortex. Herein, we monitored the unfolded protein (UPR) and heat shock response (HSR), two major proteostasis regulatory pathways, in human post-mortem tissue derived from the motor cortex of sporadic ALS (SALS) and compared them to those occurring in spinal cord. Although the UPR was activated in both tissues, specific expression of select UPR target genes, such as PDIs, was observed in motor cortex of SALS cases strongly correlating with oligodendrocyte markers. Moreover, we found that endoplasmic reticulum-associated degradation (ERAD) and HSR genes, which were activated predominately in spinal cord, correlated with the expression of neuronal markers. Our results indicate that proteostasis is strongly and selectively activated in SALS motor cortex and spinal cord where subsets of these genes are associated with specific cell type. This study expands our understanding of convergent molecular mechanisms occurring in motor cortex and spinal cord and highlights cell type–specific contributions.  相似文献   
35.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   
36.
37.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   
38.
Despite their exceptionally high capacity, overlithiated layered oxides (OLO) have not yet been practically used in lithium‐ion battery cathodes due to necessary toxic/complex chemical activation processes and unsatisfactory electrochemical reliability. Here, a new class of ecofriendly chemical activation strategy based on amphiphilic deoxyribose nucleic acid (DNA)‐wrapped multiwalled carbon nanotubes (MWCNT) is demonstrated. Hydrophobic aromatic bases of DNA have a good affinity for MWCNT via noncovalent π–π stacking interactions, resulting in core (MWCNT)‐shell (DNA) hybrids (i.e., DNA@MWCNT) featuring the predominant presence of hydrophilic phosphate groups (coupled with Na+) in their outmost layers. Such spatially rearranged Na+–phosphate complexes of the DNA@MWCNT efficiently extract Li+ from monoclinic Li2MnO3 of the OLO through cation exchange reaction of Na+–Li+, thereby forming Li4Mn5O12‐type spinel nanolayers on the OLO surface. The newly formed spinel nanolayers play a crucial role in improving the structural stability of the OLO and suppressing interfacial side reactions with liquid electrolytes, eventually providing significant improvements in the charge/discharge kinetics, cyclability, and thermal stability. This beneficial effect of the DNA@MWCNT‐mediated chemical activation is comprehensively elucidated by an in‐depth structural/electrochemical characterization.  相似文献   
39.
This study was conducted to investigate the repellent efficacy of essential oils (Origanum vulgare, Pimpinella anisum, and Tanacetum cinerariifolium) and four plant extracts (Agastache rugosa, Capsicum annuum, Citrus reticulata, and Ginkgo biloba) against Tribolium castaneum (adults and larvae) and Plodia interpunctella (larvae). Gas chromatography/mass spectrometry analysis revealed the presence of carvacrol, anethole, and jasmolin I as the predominant constituent in O. vulgare, P. anisum, and T. cinerariifolium, respectively. Furthermore, ethyl hexopyranoside, 9,12‐octadecadienoic acid, cyclopentanol, and 2‐cresol were identified in A. rugosa, C. annuum, C. reticulata, and G. biloba, respectively. The repellent efficacy of each essential oil, plant extract, and the combination of oils was evaluated using a specially designed cylinder trap for 120 h. Among the three oils, O. vulgare and T. cinerariifolium had greatest repellent efficacy against P. interpunctella larvae. T. cinerariifolium exhibited effective repellence against the adults and larvae of T. castaneum. Therefore, O. vulgare (O) and T. cinerariifolium (T) were selected for further investigation of combined effects. Two essential oils were mixed in three different ratios of OT1 (1:3), OT2 (1:1), and OT3 (3:1). The repellent efficacies of OT1 and OT2 against the adults of T. castaneum were significantly greater than that of OT3. OT1 was effective against the larvae of T. castaneum, whereas OT2 was effective against the larvae of P. interpunctella. OT1 enhanced the repellent efficacy by approximately five times against larvae of T. castaneum, compared with that of T. cinerariifolium. Overall, OT1 was selected as the best repellent substance against all the tested insects.  相似文献   
40.
Alzheimer's disease (AD) is an age‐related neurodegenerative disease. The most common pathological hallmarks are amyloid plaques and neurofibrillary tangles in the brain. In the brains of patients with AD, pathological tau is abnormally accumulated causing neuronal loss, synaptic dysfunction, and cognitive decline. We found a histone deacetylase 6 (HDAC6) inhibitor, CKD‐504, changed the tau interactome dramatically to degrade pathological tau not only in AD animal model (ADLPAPT) brains containing both amyloid plaques and neurofibrillary tangles but also in AD patient‐derived brain organoids. Acetylated tau recruited chaperone proteins such as Hsp40, Hsp70, and Hsp110, and this complex bound to novel tau E3 ligases including UBE2O and RNF14. This complex degraded pathological tau through proteasomal pathway. We also identified the responsible acetylation sites on tau. These dramatic tau‐interactome changes may result in tau degradation, leading to the recovery of synaptic pathology and cognitive decline in the ADLPAPT mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号