首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13583篇
  免费   1049篇
  国内免费   3篇
  14635篇
  2023年   55篇
  2022年   167篇
  2021年   281篇
  2020年   180篇
  2019年   246篇
  2018年   405篇
  2017年   323篇
  2016年   502篇
  2015年   794篇
  2014年   914篇
  2013年   962篇
  2012年   1252篇
  2011年   1123篇
  2010年   728篇
  2009年   653篇
  2008年   882篇
  2007年   756篇
  2006年   663篇
  2005年   611篇
  2004年   585篇
  2003年   482篇
  2002年   406篇
  2001年   220篇
  2000年   208篇
  1999年   172篇
  1998年   80篇
  1997年   62篇
  1996年   45篇
  1995年   62篇
  1994年   53篇
  1993年   39篇
  1992年   60篇
  1991年   53篇
  1990年   63篇
  1989年   44篇
  1988年   36篇
  1987年   34篇
  1986年   31篇
  1985年   39篇
  1984年   28篇
  1983年   28篇
  1982年   22篇
  1981年   24篇
  1979年   23篇
  1975年   17篇
  1974年   20篇
  1973年   20篇
  1971年   23篇
  1970年   17篇
  1968年   19篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the class C Vps complex, a key component of the endosomal fusion machinery. This interaction stimulates Rab7 GTPase activity and autophagosome fusion with late endosomes/lysosomes, thereby enhancing delivery and degradation of autophagic cargo. Furthermore, the UVRAG-class-C-Vps complex accelerates endosome-endosome fusion, resulting in rapid degradation of endocytic cargo. Remarkably, autophagosome/endosome maturation mediated by the UVRAG-class-C-Vps complex is genetically separable from UVRAG-Beclin1-mediated autophagosome formation. This result indicates that UVRAG functions as a multivalent trafficking effector that regulates not only two important steps of autophagy - autophagosome formation and maturation - but also endosomal fusion, which concomitantly promotes transport of autophagic and endocytic cargo to the degradative compartments.  相似文献   
92.
The hydrolysis which converts polysaccharides to the fermentable sugars for yeast’s lingocellulosic ethanol production also generates byproducts which inhibit the ethanol production. To investigate the extent to which inhibitory compounds affect yeast’s growth and ethanol production, fermentations by Saccharomyces cerevisiae K35 were investigated in various concentrations of acetic acid, furfural, 5-hydroxymethylfurfural (5-HMF), syringaldehyde, and coumaric acid. Fermentation in hydrolysates from yellow poplar and waste wood was also studied. After 24 h, S. cerevisiae K35 produced close to theoretically predicted ethanol yields in all the concentrations of acetic acid tested (1 ∼ 10 g/L). Both furans and phenolics inhibited cell growth and ethanol production. Ethanol yield, however, was unaffected, even at high concentrations, except in the cases of 5 g/L of syringaldehyde and coumaric acid. Although hydrolysates contain various toxic compounds, in their presence, S. Cerevisiae K35 consumed close to all the available glucose and yielded more ethanol than theoretically predicted. S. Cerevisiae K35 was demonstrated to have high tolerance to inhibitory compounds and not to need any detoxification for ethanol production from hydrolysates.  相似文献   
93.
EB1089, a 1,25-dihydroxyvitamin D(3) analog, has been known to have potent antiproliferative properties in a variety of malignant cells in vitro and in vivo. In the present study, we analyzed the effect of EB1089 on human myeloma cell lines. EB1089 inhibited the proliferation of NCI-H929 cells and RPMI8226 cells in a dose-dependent manner among three myeloma cell lines tested. The antiproliferative effect of EB1089 on myeloma cells was related to the expression level of vitamin D receptor. To investigate the mechanism of the antiproliferative effect of EB1089, cell cycle analysis was attempted in EB1089-sensitive NCI-H929 cells. EB1089 (1 x 10(-8) M) efficiently induced G(1) arrest of the cell cycle. Analysis of G(1) regulatory proteins demonstrated that protein levels of CDK2, CDK4, cyclin D1, and cyclin A were decreased in a time-dependent manner, but not those of CDK6 and cyclin E, by EB1089. In addition, EB1089 (1 x 10(-8) M, 72 h) increased the protein level of the CDKI p27 and markedly enhanced the binding of p27 with CDK2 compared to EB1089-untreated cells. Furthermore, the activity of CDK2-associated cyclin kinase was decreased, which was accompanied by the reduction of cyclin-D1-, cyclin-E-, and cyclin-A-associated kinase activities, resulting in the hypophosphorylation of Rb protein. These results suggest that EB1089 can inhibit the proliferation of human myeloma cells, especially NCI-H929 cells, via a G(1) block in association with the induction of p27 and the reduction of CDK2 activity.  相似文献   
94.
95.
96.
Molecular and cellular mechanisms for memory consolidation in the cortex are poorly known. To study the relationships between synaptic structure and function in the cortex and consolidation of long-term memory, we have generated transgenic mice in which catalytic activity of PAK, a critical regulator of actin remodeling, is inhibited in the postnatal forebrain. Cortical neurons in these mice displayed fewer dendritic spines and an increased proportion of larger synapses compared to wild-type controls. These alterations in basal synaptic morphology correlated with enhanced mean synaptic strength and impaired bidirectional synaptic modifiability (enhanced LTP and reduced LTD) in the cortex. By contrast, spine morphology and synaptic plasticity were normal in the hippocampus of these mice. Importantly, these mice exhibited specific deficits in the consolidation phase of hippocampus-dependent memory. Thus, our results provide evidence for critical relationships between synaptic morphology and bidirectional modifiability of synaptic strength in the cortex and consolidation of long-term memory.  相似文献   
97.
In this study, the role of Toll‐like receptor 2 (TLR2) in immune responses of murine peritoneal mesothelial cells against Bacteroides fragilis was investigated. Enzyme linked immunosorbent assay was used to measure cytokines and chemokines. Activation of nuclear factor κB (NF‐κB‐α) and mitogen‐activated protein kinases (MAP kinases) was investigated by western blot analysis. B. fragilis induced production of interleukin‐6, chemokine (C‐X‐C motif) ligand 1 (CXCL1) and chemokine (C‐C motif) ligand 2 (CCL2) in wild type peritoneal mesothelial cells; this was impaired in TLR2‐deficient cells. In addition, in response to B. fragilis, phosphorylation of inhibitory NF‐κB‐α and c‐Jun N‐terminal kinase mitogen‐activated protein kinase (MAPK) was induced in wild type mesothelial cells, but not in TLR2‐deficient cells,. Inhibitor assay revealed that NF‐κB and MAPKs are essential for B. fragilis‐induced production of CXCL1 and CCL2 in mesothelial cells. These findings suggest that TLR2 mediates immune responses in peritoneal mesothelial cells in response to B. fragilis.  相似文献   
98.
E. S. Nicholls  J. Jung  J. W. Davies 《CMAJ》1981,125(9):981-992
During the past two decades approximately one half of all deaths in Canada were due to cardiovascular diseases. Ischemic heart disease and cerebrovascular disease caused more than 60% and 20% of those deaths respectively. The mortality rates for ischemic heart disease in males increased slightly until 1965 and then dropped substantially, whereas the rates for females, which were declining at least since the early 1960s, accelerated in their decline. As a consequence, the rates for males remain almost twice as high as those for females. The reductions were initially observed in males 25 to 34 years old and in all age groups of females, but became apparent in a wider range of ages in the second period reviewed (1969 through 1977). The mortality of cerebrovascular disease has gradually diminished for both sexes since the 1950s, but the decline has been more pronounced among females, who originally had the higher rate. Marked geographic differences in mortality rates still exist in Canada despite the decline in death rates for both ischemic heart disease and cerebrovascular disease in all regions of the country. Surprising regional differences in times of onset of these declines have been demonstrated. For ischemic heart disease Ontario maintains the highest and the Prairies the lowest mortality rates. Quebec, despite a sustained decline, still ranks third, while the Pacific region shows the second-lowest rates in the country. The Atlantic region showed the lowest rates of decline in the period reviewed. The reduction in the mortality of ischemic heart disease in Canada (16.4% between 1969 and 1977) must be considered real for a variety of reasons. Direct evidence is not available to elucidate whether the reduction is the consequence of reduced incidence, increased survival or a combination of the two factors. The potential role of various factors that may have contributed to this decline is briefly discussed in this article.  相似文献   
99.
A mutant strain (39E H8) of Thermoanaerobacter ethanolicus that displayed high (8% [vol/vol]) ethanol tolerance for growth was developed and characterized in comparison to the wild-type strain (39E), which lacks alcohol tolerance (<1.5% [vol/vol]). The mutant strain, unlike the wild type, lacked primary alcohol dehydrogenase and was able to increase the percentage of transmembrane fatty acids (i.e., long-chain C(30) fatty acids) in response to increasing levels of ethanol. The data support the hypothesis that primary alcohol dehydrogenase functions primarily in ethanol consumption, whereas secondary alcohol dehydrogenase functions in ethanol production. These results suggest that improved thermophilic ethanol fermentations at high alcohol levels can be developed by altering both cell membrane composition (e.g., increasing transmembrane fatty acids) and the metabolic machinery (e.g., altering primary alcohol dehydrogenase and lactate dehydrogenase activities).  相似文献   
100.
Human embryonic stem (hES) cells are usually established and maintained on mouse embryonic fibroblast (MEFs) feeder layers. However, it is desirable to develop human feeder cells because animal feeder cells are associated with risks such as viral infection and/or pathogen transmission. In this study, we attempted to establish new hES cell lines using human uterine endometrial cells (hUECs) to prevent the risks associated with animal feeder cells and for their eventual application in cell-replacement therapy. Inner cell masses (ICMs) of cultured blastocysts were isolated by immunosurgery and then cultured on mitotically inactivated hUEC feeder layers. Cultured ICMs formed colonies by continuous proliferation and were allowed to proliferate continuously for 40, 50, and 55 passages. The established hES cell lines (Miz-hES-14, -15, and -9, respectively) exhibited typical hES cells characteristics, including continuous growth, expression of specific markers, normal karyotypes, and differentiation capacity. The hUEC feeders have the advantage that they can be used for many passages, whereas MEF feeder cells can only be used as feeder cells for a limited number of passages. The hUECs are available to establish and maintain hES cells, and the high expression of embryotrophic factors and extracellular matrices by hUECs may be important to the efficient growth of hES cells. Clinical applications require the establishment and expansion of hES cells under stable xeno-free culture systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号