首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17941篇
  免费   1801篇
  国内免费   3篇
  19745篇
  2022年   168篇
  2021年   278篇
  2020年   205篇
  2019年   256篇
  2018年   366篇
  2017年   304篇
  2016年   531篇
  2015年   819篇
  2014年   892篇
  2013年   1038篇
  2012年   1315篇
  2011年   1261篇
  2010年   843篇
  2009年   690篇
  2008年   1000篇
  2007年   911篇
  2006年   858篇
  2005年   783篇
  2004年   801篇
  2003年   678篇
  2002年   619篇
  2001年   357篇
  2000年   321篇
  1999年   284篇
  1998年   168篇
  1997年   150篇
  1996年   123篇
  1995年   120篇
  1994年   133篇
  1993年   118篇
  1992年   188篇
  1991年   199篇
  1990年   186篇
  1989年   191篇
  1988年   169篇
  1987年   156篇
  1986年   157篇
  1985年   140篇
  1984年   119篇
  1983年   99篇
  1982年   99篇
  1981年   102篇
  1980年   90篇
  1979年   110篇
  1978年   108篇
  1976年   86篇
  1975年   100篇
  1974年   99篇
  1973年   89篇
  1972年   73篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
831.
Phenamiphos (6.7 kg a.i./ha) was applied via an irrigation simulator to squash at planting (AP) and 2 weeks after planting (PP), and to corn AP and 1 week PP to manage root-knot nematodes (Meloidogyne incognita). The nematicide was applied with 0.25, 0.64, 1.27, and 1.91 cm surface water/ ha to a Lakeland sand in which the soil moisture was at or near field capacity. Based on efficacy and crop response, no additional benefits resulted when phenamiphos was applied in volumes of water greater than 0.25 crn/ha. The cost of applying each 0.25 cm of water over a hectare is approximately $1.08, or a 92% reduction in nematicide application cost over conventional methods ($13.50/ha). Low root-gall indices and high yields from squash and corn indicate more effective nematode management when phenamiphos was applied AP rather than PP. Results from this method of applying phenamiphos suggest that certain nematicides could be used as salvage alternatives when nematodes are detected in crops soon after planting. For multiple-pest management, nematicides, other compatible biocides, and fertilizers could be applied simultaneously with sprinkler irrigation.  相似文献   
832.
Phytoplankton can be exposed to periods of N starvation with episodic N resupply. N starvation in Dunaliella tertiolecta (Butcher) measured over 4 days was characterized by slow reduction in cell chl and protein content and chl/carotenoid ratio and a decline in photosynthetic capacity and maximum quantum yield of photosynthesis (Fv/Fm). In the early stages of N starvation, cell division was maintained despite reduction in cellular chl. Chl content was more sensitive than carotenoids to N deprivation, and cellular chl a was maintained preferentially over chl b under N starvation. NO3? resupply stimulated rapid and complete recovery of Fv/Fm (from 0.4 to 0.7) within 24 h and commencement of cell division after 10 h, although N‐replete levels of cell chl and protein were not reestablished within 24 h. Recovery of Fv/Fm was correlated with increases in cell chl and protein and was more related to increases in Fm than to changes in F0. Recovery of Fv/Fm was biphasic with a second phase of recovery commencing 4–6 h after resupply of NO3?. Uptake of NO3? from the external medium and the recovery of Fv/Fm, cell chl, and protein were inhibited when either cytosolic or chloroplastic protein synthesis was inhibited by cycloheximide or lincomycin, respectively; a time lag observed before maximum NO3? uptake was consistent with synthesis of NO3? transporters and assimilation enzymes. When both chloroplastic and cytosolic translation was inhibited, Fv/Fm declined dramatically. Dunaliella tertiolecta demonstrated a capacity to rapidly reestablish photosynthetic function and initiate cell division after N resupply, an important strategy in competing for limiting inorganic N resources.  相似文献   
833.
Neurofilaments are essential for acquisition of normal axonal calibers. Several lines of evidence have suggested that neurofilament-dependent structuring of axoplasm arises through an "outside-in" signaling cascade originating from myelinating cells. Implicated as targets in this cascade are the highly phosphorylated KSP domains of neurofilament subunits NF-H and NF-M. These are nearly stoichiometrically phosphorylated in myelinated internodes where radial axonal growth takes place, but not in the smaller, unmyelinated nodes. Gene replacement has now been used to produce mice expressing normal levels of the three neurofilament subunits, but which are deleted in the known phosphorylation sites within either NF-M or within both NF-M and NF-H. This has revealed that the tail domain of NF-M, with seven KSP motifs, is an essential target for the myelination-dependent outside-in signaling cascade that determines axonal caliber and conduction velocity of motor axons.  相似文献   
834.
CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte) cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes.  相似文献   
835.
836.
Oxidized LDL (oxLDL) performs critical roles in atherosclerosis by inducing macrophage foam cell formation and promoting inflammation. There have been reports showing that oxLDL modulates macrophage cytoskeletal functions for oxLDL uptake and trapping, however, the precise mechanism has not been clearly elucidated. Our study examined the effect of oxLDL on non-muscle myosin heavy chain IIA (MHC-IIA) in macrophages. We demonstrated that oxLDL induces phosphorylation of MHC-IIA (Ser1917) in peritoneal macrophages from wild-type mice and THP-1, a human monocytic cell line, but not in macrophages deficient for CD36, a scavenger receptor for oxLDL. Protein kinase C (PKC) inhibitor-treated macrophages did not undergo the oxLDL-induced MHC-IIA phosphorylation. Our immunoprecipitation revealed that oxLDL increased physical association between PKC and MHC-IIA, supporting the role of PKC in this process. We conclude that oxLDL via CD36 induces PKC-mediated MHC-IIA (Ser1917) phosphorylation and this may affect oxLDL-induced functions of macrophages involved in atherosclerosis. [BMB Reports 2015; 48(1): 48-53]  相似文献   
837.
Seo JK  Kim HK  Lee TY  Hahm KS  Kim KL  Lee MK 《Peptides》2005,26(11):2175-2181
C34-LAI containing amino acids 118 to 151 of the HIV-1(LAI) gp41 ectodomain exhibits potent anti-HIV-1 activity. However, the N-terminal halves of C34 peptides vary more according to the HIV-1 strain than the C-terminal halves. Therefore, an analysis was conducted on the anti-HIV-1 activities of the C34 peptides derived from various HIV-1 strains. C34-89.6 exhibited the strongest anti-HIV-1 activity among the C34 peptides tested. Interestingly, its N-terminal half was more acidic than those of the other C34 peptides, whereas its C-terminal half was more basic. Since the C-peptides derived from the HIV-1(LAI) strain are used extensively, the anti-HIV-1 activities of these peptides were compared between the HIV-1 strains 89.6 and LAI. When using chimeric peptides, it was found that the C-terminal basic region of C34-89.6 was more critical than its N-terminal basic region. The anti-HIV-1 activity of T20-89.6 and C28-89.6 was also stronger than that of T20-LAI and C28-LAI, respectively. The anti-HIV-1 activity of C28-89.6 was weakened when the C-terminal basic residues were changed to the corresponding residues of C28-LAI. However, no conformational differences were found among the C28 peptides. Accordingly, these results imply that introducing the C-terminal basic residues of the HIV-1 89.6 C-peptide may be useful for developing potent anti-HIV-1 drugs.  相似文献   
838.
Ataxia-telangiectasia mutated (ATM) is essential for rapid induction of cellular responses to DNA double strand breaks (DSBs). In this study, we mapped a nuclear localization signal (NLS), 385KRKK388, within the amino terminus of ATM and demonstrate its recognition by the conventional nuclear import receptor, the importin alpha1/beta1 heterodimer. Although mutation of this NLS resulted in green fluorescent protein (GFP) x ATM(NLSm) localizing predominantly within the cytoplasm, small amounts of nuclear GFP x ATM(NLSm) were still sufficient to elicit a DNA damage response. Insertion of an heterologous nuclear export signal between GFP and ATM(NLSm) resulted in complete cytoplasmic localization of ATM, concomitantly reducing the level of substrate phosphorylation and increasing radiosensitivity, which indicates a functional requirement for ATM nuclear localization. Interestingly, the carboxyl-terminal half of ATM, containing the kinase domain, which localizes to the cytoplasm, could not autophosphorylate itself or phosphorylate substrates, nor could it correct radiosensitivity in response to DSBs even when targeted to the nucleus by insertion of an exogenous NLS, demonstrating that the ATM amino terminus is required for optimal ATM function. Moreover, we have shown that the recruitment/retention of ATM at DSBs requires its kinase activity because a kinase-dead mutant of GFP x ATM failed to form damage-induced foci. Using deletion mutation analysis we mapped a domain in ATM (amino acids 5-224) required for its association with chromatin, which may target ATM to sites of DNA damage. Combined, these data indicate that the amino terminus of ATM is crucial not only for nuclear localization but also for chromatin association, thereby facilitating the kinase activity of ATM in vivo.  相似文献   
839.
Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intracellular and periplasmic accumulation of cadmium. Dot blot DNA hybridization using the probes for the smtAB, cadAC, and cadD genes indicated the presence of similar genetic determinants of heavy metal resistance in the SRB tested. DNA sequencing of the amplified DNA showed strong nucleotide homology in all the SRB strains with the known smtAB genes encoding synechococcal metallothioneins. Protein homology with the known heavy metal-translocating ATPases was also detected in the cloned amplified DNA of Desulfomicrobium norvegicum I1 and Desulfovibrio desulfuricans DSM 1926, suggesting the presence of multiple genetic mechanisms of metal resistance in the two strains.  相似文献   
840.
The 2a (polymerase) protein of cucumber mosaic virus (CMV) was shown to be phosphorylated both in vivo and in vitro. In vitro assays using 2a protein mutants and tobacco protein kinases showed that the 2a protein has at least three phosphorylation sites, one of which is located within the N-terminal 126 amino acid region. This region is essential and sufficient for interaction with the CMV 1a protein. When phosphorylated in vitro, the 2a protein N-terminal region failed to interact with the 1a protein. Since the 1a-2a interaction is essential for the replication of CMV, this suggests that phosphorylation of the N-terminal region of the 2a protein negatively modulates the interaction in vivo, and may have a regulatory role acting directly in viral infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号