首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1770篇
  免费   155篇
  国内免费   12篇
  2024年   2篇
  2023年   6篇
  2022年   19篇
  2021年   48篇
  2020年   46篇
  2019年   35篇
  2018年   59篇
  2017年   50篇
  2016年   71篇
  2015年   125篇
  2014年   113篇
  2013年   123篇
  2012年   156篇
  2011年   183篇
  2010年   89篇
  2009年   82篇
  2008年   102篇
  2007年   110篇
  2006年   83篇
  2005年   80篇
  2004年   82篇
  2003年   98篇
  2002年   65篇
  2001年   16篇
  2000年   13篇
  1999年   17篇
  1998年   5篇
  1997年   5篇
  1996年   6篇
  1995年   9篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1970年   1篇
  1956年   1篇
排序方式: 共有1937条查询结果,搜索用时 62 毫秒
11.
Signal transduction pathways in guinea pig sperm   总被引:2,自引:0,他引:2  
Trifluoperazine (TFP), the antagonist of calmodulin (CaM). significantly stimulated the capacitation and acrosome reaction of guinea pig spermatozoa at the concentration of 10-100μmol/L, independent of the external Ca2+. Forskolin, dbcAMP and caffeine evidently promoted the occurrence of acrosome reaction of spermatozoa at early capacitation stage (5 h) in nonsynchronous system but not in synchronous system. If the spermatozoa were capacitated for 15 h in synchronous system, the above three drugs significantly stimulated acrosome reaction in a Ca2+-independent manner. Protein kinase C activators, i.e. phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate (PDB) did not influence the occurrence of acrosome reaction of spermatozoa at early capacitation stage, but significantly increased the acrosome reaction rate in capacitated spermatozoa in a Ca2+-independent manner. In contrast. PKC inhibitor staurosporine significantly inhibited the occurrence of acrosome reaction.  相似文献   
12.
Mixed-phase plants of Griffithsia japonica Okamura spontaneously occurred in a laboratory culture. Four female plants produced tetrasporangia and spermatangia in addition to their normal female reproductive structures (bisexual/mixed-phase plants), and four male plants produced tetrasporangia as well as spermatangia (male/mixed-phase plants). To determine the nuclear ploidy level of these mixed-phase plants, relative nuclear sizes of male, female, tetrasporangial, and mixed-phase plants were measured using a microscopic image analysis system. Haploid gametophytes could be distinguished from diploid tetrasporophytes by relative nuclear sizes, with the later having nuclei twice the size of the former. Relative nuclear sizes of the mixed-phase plants were similar to those of the haploid plants. Thus, the mixed-phase plants were determined to be haploid. Haploid mixed-phase plants of G. japonica have a potential to produce male, female and tetrasporangial reproductive structures. Sex determination models are discussed to explain "haploid" mixed-phase phenomena in red algae .  相似文献   
13.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   
14.
Clinical efficacy of differentiation therapy with mitogen-activated protein kinase inhibitors (MAPKi) for lethal radioiodine-refractory papillary thyroid cancer (RR-PTC) urgently needs to be improved and the aberrant trimethylation of histone H3 lysine 27 (H3K27) plays a vital role in BRAFV600E-MAPK-induced cancer dedifferentiation and drug resistance. Therefore, dual inhibition of MAPK and histone methyltransferase (EZH2) may produce more favourable treatment effects. In this study, BRAFV600E-mutant (BCPAP and K1) and BRAF-wild-type (TPC-1) PTC cells were treated with MAPKi (dabrafenib or selumetinib) or EZH2 inhibitor (tazemetostat), or in combination, and the expression of iodine-metabolizing genes, radioiodine uptake, and toxicity were tested. We found that tazemetostat alone slightly increased iodine-metabolizing gene expression and promoted radioiodine uptake and toxicity, irrespective of the BRAF status. However, MAPKi induced these effects preferentially in BRAFV600E mutant cells, which was robustly strengthened by tazemetostat incorporation. Mechanically, MAPKi-induced decrease of trimethylation of H3K27 was evidently intensified by tazemetostat in BRAFV600E-mutant cells. In conclusion, tazemetostat combined with MAPKi enhances differentiation of PTC cells harbouring BRAFV600E through synergistically decreasing global trimethylation of H3K27, representing a novel differentiation strategy.  相似文献   
15.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   
16.
17.
18.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   
19.
The digital twin technique has been broadly utilized to efficiently and effectively predict the performance and problems associated with real objects via a virtual replica. However, the digitalization of twin electrochemical systems has not been achieved thus far, owing to the large amount of required calculations of numerous and complex differential equations in multiple dimensions. Nevertheless, with the help of continuous progress in hardware and software technologies, the fabrication of a digital twin‐driven electrochemical system and its effective utilization have become a possibility. Herein, a digital twin‐driven all‐solid‐state battery with a solid sulfide electrolyte is built based on a voxel‐based microstructure. Its validity is verified using experimental data, such as effective electronic/ionic conductivities and electrochemical performance, for LiNi0.70Co0.15Mn0.15O2 composite electrodes employing Li6PS5Cl. The fundamental performance of the all‐solid‐state battery is scrutinized by analyzing simulated physical and electrochemical behaviors in terms of mass transport and interfacial electrochemical reaction kinetics. The digital twin model herein reveals valuable but experimentally inaccessible time‐ and space‐resolved information including dead particles, specific contact area, and charge distribution in the 3D domain. Thus, this new computational model is bound to rapidly improve the all‐solid‐state battery technology by saving the research resources and providing valuable insights.  相似文献   
20.
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号