首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58936篇
  免费   17789篇
  国内免费   15篇
  2023年   97篇
  2022年   333篇
  2021年   972篇
  2020年   2455篇
  2019年   4059篇
  2018年   4405篇
  2017年   4555篇
  2016年   4908篇
  2015年   5432篇
  2014年   5286篇
  2013年   5973篇
  2012年   4376篇
  2011年   3954篇
  2010年   4587篇
  2009年   3075篇
  2008年   2680篇
  2007年   2080篇
  2006年   1893篇
  2005年   1829篇
  2004年   1799篇
  2003年   1533篇
  2002年   1482篇
  2001年   1183篇
  2000年   1085篇
  1999年   795篇
  1998年   325篇
  1997年   267篇
  1996年   233篇
  1995年   202篇
  1994年   210篇
  1993年   186篇
  1992年   342篇
  1991年   319篇
  1990年   264篇
  1989年   287篇
  1988年   234篇
  1987年   219篇
  1986年   224篇
  1985年   192篇
  1984年   165篇
  1983年   133篇
  1982年   124篇
  1981年   125篇
  1980年   103篇
  1979年   128篇
  1978年   134篇
  1976年   117篇
  1975年   126篇
  1974年   115篇
  1973年   120篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The PI3K/AKT pathway is frequently activated in endometrial carcinoma. BMI‐1 (B‐lymphoma Mo‐MLV insertion region 1) protein affects expression of PTEN (phosphatase and tensin homolog) in some cancers, but its significance for endometrial tumorigenesis is not known. The objective of this study was to determine the relationship between BMI‐1 and expression of factors affecting AKT (protein kinase B) phosphorylation level in endometrial cancer. The expression of proteins and mRNAs was investigated in endometrial cancer specimens and samples of non‐neoplastic endometrial tissue by Western blot and RT‐PCR, respectively. The impact of BMI‐1 down‐regulation on AKT phosphorylation and expression of genes coding for several phosphatases were studied in HEC1A cells. The results showed that BMI‐1 depletion caused increase in PHLPP1 and PHLPP2 (PH domain and leucine‐rich repeat protein phosphatases 1/2) expression and decrease in phospho‐AKT (pAKT) level. In more advanced tumours with higher metastatic potential, the expression of BMI‐1 was lower compared to tumours less advanced and without lymph node metastasis. There were significant inverse correlations between BMI‐1 and PHLPPs, especially PHLPP1 in normal endometrial samples. The inverse correlation between BMI‐1 and PHLPP1/PHLPP2 expression was observed in PTEN positive but not PTEN negative cancers. Low PHLPP2 expression in tumours predicted poorer overall survival. BMI‐1 impacts on AKT phosphorylation level in endometrial cells by regulation of PHLPP expression.  相似文献   
982.
One of the core symptoms of autism spectrum disorder (ASD) is impaired social interaction. Currently, no pharmacotherapies exist for this symptom due to complex biological underpinnings and distinct genetic models which fail to represent the broad disease spectrum. One convincing hypothesis explaining social deficits in human ASD patients is amotivation, however it is unknown whether mouse models of ASD represent this condition. Here we used two highly trusted ASD mouse models (male Shank3‐deficient [Shank3+/ΔC] mice modeling the monogenic etiology of ASD, and inbred BTBR mice [both male and female] modeling the idiopathic and highly polygenic pathology for ASD) to evaluate the level of motivation to engage in a social interaction. In the behavioral paradigms utilized, a social stimulus was placed in the open arm of the elevated plus maze (EPM), or the light compartment of the light‐dark box (LDB). To engage in a social interaction, mice were thus required to endure innately aversive conditions (open areas, height, and/or light). In the modified EPM paradigm, both Shank3+/ΔC and BTBR mice demonstrated decreased open‐arm engagement with a social stimulus but not a novel object, suggesting reduced incentive to engage in a social interaction in these models. However, these deficits were not expressed under the less severe aversive pressures of the LDB. Collectively, we show that ASD mouse models exhibit diminished social interaction incentive, and provide a new investigation strategy facilitating the study of the neurobiological mechanisms underlying social reward and motivation deficits in neuropsychiatric disorders.  相似文献   
983.
The group III metabotropic glutamate receptor subtype 7 (mGlu7) is an important regulator of glutamatergic and GABAergic neurotransmission and known to mediate emotionality and male social behavior. However, a possible regulatory role in maternal behavior remains unknown to date. Adequate expression of maternal behavior is essential for successful rearing and healthy development of the young. By understanding genetic and neural mechanisms underlying this important prosocial behavior, we gain valuable insights into possible dysregulations. Using genetic ablation as well as pharmacological modulation, we studied various parameters of maternal behavior in two different mouse strains under the influence of mGlu7. We can clearly show a regulatory role of mGlu7 in maternal behavior. Naïve virgin female C57BL/6 mGlu7 knockout mice showed more often nursing postures and less spontaneous maternal aggression compared to their heterozygous and wildtype littermates. In lactating C57BL/6 wildtype mice, acute central activation of mGlu7 by the selective agonist AMN082 reduced arched back nursing and accelerated pup retrieval without affecting maternal aggression. In addition, in lactating CD1 wildtype mice the selective mGlu7 antagonist XAP044 increased both pup retrieval and maternal aggression. With respect to receptor expression levels, mGlu7 mRNA expression was higher in lactating vs virgin C57BL/6 mice in the prefrontal cortex, but not hypothalamus or hippocampus. In conclusion, these findings highlight a significant role of the mGlu7 receptor subtype in mediating maternal behavior in mice. Region‐dependent studies are warranted to further extend our knowledge on the specific function of the brain glutamate system in maternal behavior.  相似文献   
984.
Glutamate Dehydrogenase 1 (GDH), encoded by the Glud1 gene in rodents, is a mitochondrial enzyme critical for maintaining glutamate homeostasis at the tripartite synapse. Our previous studies indicate that the hippocampus may be particularly vulnerable to GDH deficiency in central nervous system (CNS). Here, we first asked whether mice with a homozygous deletion of Glud1 in CNS (CNS‐Glud1 ?/? mice) express different levels of glutamate in hippocampus, and found elevated glutamate as well as glutamine in dorsal and ventral hippocampus, and increased glutamine in medial prefrontal cortex (mPFC). l ‐serine and d ‐serine, which contribute to glutamate homeostasis and NMDA receptor function, are increased in ventral but not dorsal hippocampus, and in mPFC. Protein expression levels of the GABA synthesis enzyme glutamate decarboxylase (GAD) GAD67 were decreased in the ventral hippocampus as well. Behavioral analysis revealed deficits in visual, spatial and social novelty recognition abilities, which require intact hippocampal‐prefrontal cortex circuitry. Finally, hippocampus‐dependent contextual fear retrieval was deficient in CNS‐Glud1 ?/? mice, and c‐Fos expression (indicative of neuronal activation) in the CA1 pyramidal layer was reduced immediately following this task. These data point to hippocampal subregion‐dependent disruption in glutamate homeostasis and excitatory/inhibitory balance, and to behavioral deficits that support a decline in hippocampal‐prefrontal cortex connectivity. Together with our previous data, these findings also point to different patterns of basal and activity‐induced hippocampal abnormalities in these mice. In sum, GDH contributes to healthy hippocampal and PFC function; disturbed GDH function is relevant to several psychiatric and neurological disorders.  相似文献   
985.
The vasopressin system has been implicated in the regulation of social behavior and cognition in humans, nonhuman primates and other social mammals. In chimpanzees, polymorphisms in the vasopressin V1a receptor gene (AVPR1A) have been associated with social dimensions of personality, as well as to responses to sociocommunicative cues and mirror self‐recognition. Despite evidence of this association with social cognition and behavior, there is little research on the neuroanatomical correlates of AVPR1A variation. In the current study, we tested the association between AVPR1A polymorphisms in the RS3 promotor region and gray matter covariation in chimpanzees using magnetic resonance imaging and source‐based morphometry. The analysis identified 13 independent brain components, three of which differed significantly in covariation between the two AVPR1A genotypes (DupB?/? and DupB+/?; P < .05). DupB+/? chimpanzees showed greater covariation in gray matter in the premotor and prefrontal cortex, basal forebrain, lunate and cingulate cortex, and lesser gray matter covariation in the superior temporal sulcus and postcentral sulcus. Some of these regions were previously found to differ in vasopressin and oxytocin neural fibers between nonhuman primates, and in AVPR1A gene expression in humans with different RS3 alleles. This is the first report of an association between AVPR1A and gray matter covariation in nonhuman primates, and specifically links an AVPR1A polymorphism to structural variation in the social brain network. These results further affirm the value of chimpanzees as a model species for investigating the relationship between genetic variation, brain structure and social cognition with relevance to psychiatric disorders, including autism.  相似文献   
986.
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells.  相似文献   
987.
The fruit of Crataegus dahurica Koehne was used to treat the disease of infantile indigestion and dyspepsia as an ethnic medicine and food. As a continuous work on finding the active constituents from the edible herbs, four new biphenyl derivatives ( 1 – 4 ), together with two known compounds ( 5 and 6 ), were obtained from the petroleum ether fraction of the fruits of C. dahurica. Their structures were determined by the extensive 1D and 2D NMR spectra and HR‐MS spectrometry. Furthermore, the anti‐inflammatory activities of all the isolated compounds were investigated, in which compound 4 showed moderately inhibitory effects on NO production in RAW264.7 cells without inducing cytotoxicity.  相似文献   
988.
Pithecellobium dulce has been used in traditional medicine to treat various ailments owing to its restorative properties. The biological activities and chemical profiles of the lipophilic fraction of P. dulce bark and leaves were assessed herein. Fatty acid methyl esters (FAME) and unsaponifiable matter (USM) were prepared and analyzed by GC/MS. A total of 40 compounds were identified in the bark saponifiable fraction, whereas 9 compounds were annotated in the leaves. Palmitic acid methyl ester was the major compound identified accounting for 41.48 % of the bark and 19.03 % of the leaves composition. Besides, linolenic acid methyl ester (22.40 %) and linoleic acid (12.69 %) were annotated in the leaves saponifiable fraction. A total of 63 compounds were detected in the bark USM and 4 compounds were identified in the leaves. Phytol represented the major component in the leaves (52.57 %) followed by lupeol (20.68 %) and lupenone (8.60 %). Meanwhile, n‐dodecane dominated in the bark USM accounting for 24.69 % of the total composition. The leaves and bark lipophilic fractions revealed moderate antioxidant and antibacterial activities. Both extracts showed no antifungal activity. No cytotoxicity was observed for both lipophilic fractions. P. dulce offers a good source of antioxidant compounds that can be introduced to food and pharmaceutical industry.  相似文献   
989.
Chlorogenic (5‐CQA), 1,5‐, 3,5‐, 4,5‐ and 3,4‐dicaffeoylquinic (DCQA) acids were identified and quantified in the methanol extracts of Inula oculus‐christi L., I. bifrons L., I. aschersoniana Janka var. aschersoniana, I. ensifolia L., I. conyza (Griess .) DC. and I. germanica L. by HPLC analysis. The amount of 5‐CQA varied from 5.48 to 28.44 mg/g DE and the highest content was detected in I. ensifolia. 1,5‐DCQA (4.05–55.25 mg/g DE) was the most abundant dicaffeoyl ester of quinic acid followed by 3,5‐DCQA, 4,5‐DCQA and 3,4‐DCQA. The extract of I. ensifolia showed the highest total phenolic content (119.92±0.95 mg GAE/g DE) and exhibited the strongest DPPH radical scavenging activity (69.41±0.55 %). I. bifrons extract was found to be the most active sample against ABTS.+ (TEAC 0.257±0.012 mg/mL) and the best tyrosinase inhibitor. The studied extracts demonstrated a low inhibitory effect towards acetylcholinesterase and possessed low cytotoxicity in concentration range from 10 to 300 μg/mL toward non‐cancer (MDCK II) and cancer (A 549) cells.  相似文献   
990.
Studies of the phytotoxic effects between plants can be a crucial tool in the discovery of innovative compounds with herbicide potential. In this sense, we can highlight ruzigrass (Urochloa ruziziensis), which is traditionally used in the crop rotation system in order to reduce weed emergence. The aim of this work was to characterize the secondary metabolites of ruzigrass and to evaluate its phytotoxic effects. In total, eight compounds were isolated: friedelin, oleanolic acid, α‐amyrin, 1‐dehydrodiosgenone, sitosterol and stigmasterol glycosides, tricin and p‐coumaric acid. Phytotoxic effects of the crude methanolic extract and fractions of ruzigrass were assessed using germination rate, initial seedling growth, and biomass of Bidens pilosa, Euphorbia heterophylla and Ipomoea grandifolia. Chemometric analysis discriminated the weed species into three groups, and B. pilosa was the most affected by fractions of ruzigrass. The phytotoxic activities of 1‐dehydrodiosgenone, tricin, and p‐coumaric acid are also reported, and p‐coumaric acid and 1‐dehydrodiosgenone were active against B. pilosa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号