首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   9篇
  2023年   7篇
  2022年   2篇
  2021年   10篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   9篇
  2011年   11篇
  2010年   9篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1988年   1篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
51.
52.
The maximal activities of 28 enzymes, representing multiple pathways of intermediary metabolism, were quantified in the brain, liver and skeletal muscle of spadefoot toads Scaphiopus couchii, comparing control toads with animals that had estivated for 2 months. Estivation-induced changes in brain enzyme activities were consistent with suppressed glycolysis and increased ketone body and amino acid catabolism. In liver, estivation resulted in reduced activities of eight enzymes representing carbohydrate, amino acid, ketone body and phosphagen metabolism, but the maximal activity of malic enzyme increased by 2.4-fold. Estivation led to a large-scale reorganization of skeletal muscle affecting most of the enzymes analyzed. Activities of enzymes of carbohydrate catabolism were generally elevated except for glycogen phosphorylase and hexokinase, whereas those of enzymes of fatty acid synthesis and ketone body metabolism were reduced. Increased glutamate dehydrogenase activities in both brain and muscle, as well as activities of other amino-acid-catabolizing enzymes in muscle, correlated with specific changes in the free amino acids pools in those tissues (reduced glutamine activity, increased glutamate, alanine and valine activities) that appear to be related to protein catabolism, for the purposes of elevating urea levels. The effects of estivation on signal transduction systems were also assessed. Total activities of protein kinases A and C (PKA and PKC) were largely unaltered in toad tissues during estivation (except for a 57% reduction in liver total PKC), but in seven organs there were strong reductions in the percentage of PKA present as the active catalytic subunit in estivating animals, and three contained a much lower percentage of membrane-bound active PKC during estivation. Activities of protein phosphatase types 1, 2A, 2B, and 2C were also frequently reduced during estivation. Overall, these results suggest that anuran estivation involves metabolic reorganization, including changing the maximal activities of key enzymes of intermediary metabolism as well as depressing the metabolic rate by suppressing signal transducing enzymes.  相似文献   
53.
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter.  相似文献   
54.
Human microRNAs (miRs) have been implicated in human diseases presumably through the downregulation and silencing of targeted genes via post-translational modifications. However, their role in the early stage of coronary atherosclerosis is not known. The aim of this study was to test the hypothesis that patients with early atherosclerosis and coronary endothelial dysfunction (CED) have alterations in transcoronary miR gradients. Patients underwent coronary angiography and endothelial function testing in the cardiac catheterization laboratory. Patients were divided into abnormal (n = 26) and normal (n = 22) microvascular coronary endothelial function based on intracoronary response to infused acetylcholine measured as a percent change in coronary blood flow (CBF) and arterial diameter. Blood samples were obtained simultaneously from the aorta and coronary sinus at the time of catheterization for RNA isolation, and miR subsequently assessed. Baseline characteristics were similar in both groups. Patients with microvascular CED displayed transcoronary gradients significantly elevated in miR-92a and miR-133 normalized to C-elegans-39 miR. Percent change in CBF and the transcoronary gradient of miR-133 displayed a significant inverse correlation (r2 = 0.11, p = 0.03). Thus, we present novel data whereupon selected miRs demonstrate elevated transcoronary gradients in patients with microvascular CED. The current findings support further studies on the mechanistic role of miRs in coronary atherosclerosis and in humans.  相似文献   
55.
56.
57.
To interpret pharmacokinetic (PK) data of biotherapeutics, it is critical to understand which drug species is being measured by the PK assay. For therapeutic antibodies, it is generally accepted that “free” circulating antibodies are the pharmacologically active form needed to determine the PK/ pharmacodynamic (PD) relationship, safety margin calculations, and dose projections from animals to humans and the eventual characterization of the exposure in the clinic. However, “total” drug may be important in evaluating the dynamic interaction between the drug and the target, as well as the total drug exposure. In the absence of or with low amounts of soluble ligand /shed receptor, total and free drug species are often equivalent and their detection is less sensitive to assay formats or reagent choices. In contrast, in the presence of a significant amount of ligand, assay design and characterization of assay reagents are critical to understanding the PK profiles. Here, we present case studies where different assay formats affected measured PK profiles and data interpretation. The results from reagent characterizations provide a potential explanation for the observed discrepancies and highlight the importance of reagent characterization in understanding which drug species are being measured to accurately interpret PK parameters.  相似文献   
58.
59.
Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization—circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application—they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.  相似文献   
60.
The legume-rhizobia symbiosis is an important model system for research on the evolution of cooperation and conflict. A key strength of this system is that the fitness consequences of greater or lesser investment in cooperative behaviors can be measured for each partner. Most empirical studies have characterized the fitness of symbiotic rhizobia exclusively by their numbers within nodules, often estimated using nodule size as a proxy. Here we show that the relationship between nodule size and rhizobial numbers can differ drastically between strains of the same species. We further show that differences in accumulation of the storage polyester poly-3-hydroxybutyrate (PHB), which can support future reproduction, can be large enough that even direct measurements of rhizobial numbers alone can lead to qualitatively incorrect conclusions. Both results come from a comparison of strains differing in production of the ethylene-inhibitor rhizobitoxine (Rtx). A broader study (using three legume-rhizobia species pairs) showed that PHB/cell cannot be reliably estimated from its correlation with rhizobia/nodule or nodule size. Differences in PHB between strains or treatments will not always make major contributions to differences in fitness, but situation-specific data are needed before PHB can safely be neglected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号