首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10129篇
  免费   778篇
  国内免费   1篇
  10908篇
  2023年   35篇
  2022年   130篇
  2021年   208篇
  2020年   126篇
  2019年   182篇
  2018年   289篇
  2017年   219篇
  2016年   359篇
  2015年   583篇
  2014年   661篇
  2013年   682篇
  2012年   921篇
  2011年   846篇
  2010年   554篇
  2009年   472篇
  2008年   645篇
  2007年   539篇
  2006年   485篇
  2005年   466篇
  2004年   402篇
  2003年   343篇
  2002年   295篇
  2001年   196篇
  2000年   186篇
  1999年   134篇
  1998年   65篇
  1997年   45篇
  1996年   28篇
  1995年   46篇
  1994年   40篇
  1993年   31篇
  1992年   57篇
  1991年   51篇
  1990年   62篇
  1989年   42篇
  1988年   35篇
  1987年   33篇
  1986年   30篇
  1985年   39篇
  1984年   27篇
  1983年   28篇
  1982年   20篇
  1981年   23篇
  1979年   21篇
  1975年   15篇
  1974年   18篇
  1973年   19篇
  1971年   23篇
  1970年   17篇
  1968年   19篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
971.
972.
The cellular defense system (including glutathione, glutathione-related enzymes, antioxidant and redox enzymes) plays a crucial role in cell survival and growth in aerobic organisms. To understand its physiological role in tumor cells, the glutathione content and related enzyme activities in the human normal hepatic cell line, Chang and human hepatoma cell line, HepG2, were systematically measured and compared. Superoxide dismutase, catalase, and glutathione peroxidase activities are 2.8-, 4.3-, and 2.9-fold higher in HepG2 cells than in Chang cells. Total glutathione content is also about 1.4-fold higher in HepG2, which is supported by significant increases in gamma-glutamylcysteine synthetase and glutathione synthetase activities. Two other glutathione-related enzymes, glutathione reductase and gamma-glutamyltranspeptidase, are upregulated in HepG2 cells. However, thioredoxin reductase and glutathione S-transferase activities are significantly lower in HepG2 cells. These results propose that defense-related enzymes are largely modulated in tumor cells, which might be linked to their growth and maintenance.  相似文献   
973.
The expression of the N-type voltage-gated calcium channel alpha1B gene is restricted to neurons by a 5'-upstream region (-3992 to -1788) that contains negative regulatory element(s) that are active in non-neuronal cells. A 39 bp DNA element, which is repeated nine times in a head-to-tail fashion, was found within the same region. To examine whether this direct repeat (DR) may function as a negatively acting cis-regulatory element, several fusion plasmids, DR-110alpha1BLUC (1X), DR-SV40LUC (IX, 2X), in which one or two copies of the DR fragment were subcloned upstream of the homologous and heterologous promoters, were transiently transfected into HeLa and NS20Y cells. The promoter activity of DR-110alpha1BLUC (1X) decreased to approximately 17% of the 110alph(a1B)LUC construct in HeLa cells. The expression of the DR-SV40LUC (1X) and DR-SV40LUC (2X) plasmids was also reduced to 50 to 23% of the levels that were observed in the pGL2-Promoter in the same cells. However, no repression of the DR constructs was observed in NS20Y cells. An electrophoretic mobility shift assay showed that two DR-specific complexes were detected in HeLa cells, but not in NS20Y cells. In addition, Southwestern blotting revealed the presence of approximately 33 and 43 kDa proteins in HeLa cells. Overall, these results suggest that a 39 bp DNA element might act as repressor in non-neuron cells through the specific interactions of the DNA-proteins.  相似文献   
974.
It is generally assumed that the putative compound I (cpd I) in cytochrome P450 should contain the same electron and spin distribution as is observed for cpd I of peroxidases and catalases and many synthetic cpd I analogues. In these systems one oxidation equivalent resides on the Fe(IV)=O unit (d(4), S=1) and one is located on the porphyrin (S'=1/2), constituting a magnetically coupled ferryl iron-oxo porphyrin pi-cation radical system. However, this laboratory has recently reported detection of a ferryl iron (S=1) and a tyrosyl radical (S'=1/2), via M?ssbauer and EPR studies of 8 ms-reaction intermediates of substrate-free P450cam from Pseudomonas putida, prepared by a freeze-quench method using peroxyacetic acid as the oxidizing agent [Schünemann et al., FEBS Lett. 479 (2000) 149]. In the present study we show that under the same reaction conditions, but in the presence of the substrate camphor, only trace amounts of the tyrosine radical are formed and no Fe(IV) is detectable. We conclude that camphor restricts the access of the heme pocket by peroxyacetic acid. This conclusion is supported by the additional finding that binding of camphor and metyrapone inhibit heme bleaching at room temperature and longer reaction times, forming only trace amounts of 5-hydroxy-camphor, the hydroxylation product of camphor, during peroxyacetic acid oxidation. As a control we performed freeze-quench experiments with chloroperoxidase from Caldariomyces fumago using peroxyacetic acid under the identical conditions used for the substrate-free P450cam oxidations. We were able to confirm earlier findings [Rutter et al., Biochemistry 23 (1984) 6809], that an antiferromagnetically coupled Fe(IV)=O porphyrin pi-cation radical system is formed. We conclude that CPO and P450 behave differently when reacting with peracids during an 8-ms reaction time. In P450cam the formation of Fe(IV) is accompanied by the formation of a tyrosine radical, whereas in CPO Fe(IV) formation is accompanied by the formation of a porphyrin radical.  相似文献   
975.
The kdpFABC operon, coding for a high-affinity K(+)-translocating P-type ATPase, is expressed in Escherichia coli as a backup system during K(+) starvation or an increase in medium osmolality. Expression of the operon is regulated by the membrane-bound sensor kinase KdpD and the cytosolic response regulator KdpE. From a nitrogen-fixing cyanobacterium, Anabaena sp. strain L-31, a kdpDgene was cloned (GenBank accession no. AF213466) which codes for a KdpD protein (365 amino acids) that lacks both the transmembrane segments and C-terminal transmitter domain and thus is shorter than E. coli KdpD. A chimeric kdpD gene was constructed and expressed in E. coli coding for a protein (Anacoli KdpD), in which the first 365 amino acids of E. coli KdpD were replaced by those from Anabaena KdpD. In everted membrane vesicles, this chimeric Anacoli KdpD protein exhibited activities, such as autophosphorylation, transphosphorylation and ATP-dependent dephosphorylation of E. coli KdpE, which closely resemble those of the E. coli wild-type KdpD. Cells of E. coli synthesizing Anacoli KdpD expressed kdpFABC in response to K(+) limitation and osmotic upshock. The data demonstrate that Anabaena KdpD can interact with the E. coliKdpD C-terminal domain resulting in a protein that is functional in vitro as well as in vivo.  相似文献   
976.
Expression of the kdpFABC operon coding for the high affinity K+ -translocating KdpFABC complex of Escherichia coli is induced by K+ limitation or high osmolality. This process is controlled by the sensor kinase/response regulator system KdpD/KdpE. To study the importance of the transmembrane domains of KdpD for stimulus perception, each amino acid residue of the transmembrane domain 1 and Asp-424 of the adjacent periplasmic loop were replaced with Cys in a KdpD derivative devoid of native Cys residues. In vivo analysis of KdpD proteins with a single Cys residue revealed that 14 out of 18 amino acid replacements caused an altered response towards an osmotic upshift imposed by NaCl, whereby only four replacements also altered the response towards changes in the K+ concentration. The in vitro activities of most of the KdpD derivatives were in the range of KdpD devoid of native Cys residues. The results reveal that the osmosensing and K+ -sensing properties of KdpD can be dissected. Furthermore, the data support the hypothesis that osmosensing involves amino acid residues of the transmembrane domains.  相似文献   
977.
7,8-Dihydroneopterin and neopterin are secreted by human and primate macrophages after activation by interferon-gamma in a ratio of 2:1. 7,8-Dihydroneopterin is known to suppress radical-mediated processes, but it is also able in the presence of iron ions to generate superoxide radical anion and hydroxyl radicals from molecular oxygen. Effects of 7,8-dihydroneopterin were investigated on (met)myoglobin and (met)hemoglobin. Addition of 7,8-dihydroneopterin to heme proteins in air-saturated solution resulted in dose-dependent cleavage of the porphyrin moiety. The liberation of non-heme iron and carbon monoxide originating from the cleaved porphyrin was quantified. Both were generated at equimolar concentrations with a linear correlation coefficient of 0.9. Addition of ferrous iron significantly accelerated the pteridine-mediated cleaving of the porphyrin. However, the total yield of porphyrin cleaved was controlled by the pterin rather than by the ferrous ion concentration. 7,8-Dihydroneopterin is assumed to reduce the heme iron in intact protein molecules, thereby preparing the conditions for binding of oxygen and carbon monoxide as ligands. Beyond that, it is concluded that hydroxyl radicals might be generated via reduction of molecular oxygen to superoxide anion in the autoxidation process and dismutation to hydrogen peroxide and subsequent Fenton reaction.  相似文献   
978.
Glucose-6-phosphatase (G6Pase) is a multiple protein complex in the endoplasmic reticulum (ER) that includes a mechanism (known as T3) for glucose exit from the ER to the cytosol. The molecular identity of T3 is not known. T3 has been shown to be functional in the absence of GLUT2, indicating that it is not GLUT2. Here we found a 55-kDa protein in high-density microsomal fraction (HDM) of rat hepatocytes that is recognized by polyclonal GLUT2 antibody raised against the GLUT2 C-terminal 14-amino-acid-sequence peptide. HDM contained calnexin but no integrin-beta1 or Na/K ATPase in Western blotting. Significant GLUT2 immunoreactivity was colocalized with colligin, an ER marker, in confocal microscopy. Furthermore, the 55-kDa protein in HDM was labeled with a covalently reactive, impermeable glucose transporter substrate, 1,3-bis-(3-deoxy-D-glucopyranose-3-yloxy)-2-propyl 4-benzoyl-benzoate (B3GL) when hepatocyte homogenates, but not intact cells, were labeled. In addition glucose efflux from HDM vesicles was sensitive to B3GL treatment in a dose-dependent manner. Based on these findings, we suggest that T3 may be a novel facilitative glucose transporter that is highly homologous to GLUT2 in the C-terminal sequence, thus cross-reacting with the GLUT2 antibody. The finding will be useful in molecular identification and cloning of T3.  相似文献   
979.
Previous studies show that the Hsp90 complex facilitates binding of duck hepatitis B virus polymerase on the epsilon stem-loop region in pregenomic RNA for the priming of Pol. In this report, we found that Hsp90 also binds to human HBV Pol and its binding seems to be involved in in vitro priming of human HBV Pol. (i) Inhibition of Hsp90 by anti-Hsp90 antibody (3G3) and (ii) the stripping of the Hsp90 by 1 M NaCl buffer containing 1% NP-40 almost completely reduced in vitro priming activity of human HBV Pol expressed in insect cells. However, binding of human HBV Pol to pregenomic RNA is different from that of duck HBV Pol. It seems that Hsp90 makes the human HBV Pol competent for in vitro priming rather than maintaining the human HBV Pol/pregenomic RNA complex as duck HBV Pol. In addition, although Hsp70 is a component of the Hsp90 complex, Hsp70 can directly bind to human HBV Pol without Hsp90.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号