全文获取类型
收费全文 | 5070篇 |
免费 | 367篇 |
国内免费 | 3篇 |
专业分类
5440篇 |
出版年
2024年 | 6篇 |
2023年 | 25篇 |
2022年 | 68篇 |
2021年 | 92篇 |
2020年 | 75篇 |
2019年 | 97篇 |
2018年 | 144篇 |
2017年 | 107篇 |
2016年 | 176篇 |
2015年 | 257篇 |
2014年 | 330篇 |
2013年 | 359篇 |
2012年 | 463篇 |
2011年 | 449篇 |
2010年 | 274篇 |
2009年 | 249篇 |
2008年 | 317篇 |
2007年 | 315篇 |
2006年 | 248篇 |
2005年 | 233篇 |
2004年 | 251篇 |
2003年 | 193篇 |
2002年 | 164篇 |
2001年 | 102篇 |
2000年 | 104篇 |
1999年 | 68篇 |
1998年 | 26篇 |
1997年 | 26篇 |
1996年 | 20篇 |
1995年 | 18篇 |
1994年 | 15篇 |
1993年 | 11篇 |
1992年 | 19篇 |
1991年 | 24篇 |
1990年 | 18篇 |
1989年 | 10篇 |
1988年 | 13篇 |
1987年 | 7篇 |
1986年 | 5篇 |
1985年 | 7篇 |
1984年 | 7篇 |
1982年 | 5篇 |
1980年 | 5篇 |
1978年 | 3篇 |
1976年 | 5篇 |
1975年 | 3篇 |
1973年 | 4篇 |
1972年 | 3篇 |
1971年 | 5篇 |
1967年 | 3篇 |
排序方式: 共有5440条查询结果,搜索用时 15 毫秒
51.
Jaeyoon Kim Yoon Sup Choi Seyoung Lim Kyungmoo Yea Jong Hyuk Yoon Dong‐Jae Jun Sang Hoon Ha Jung‐Wook Kim Jae Ho Kim Pann‐Ghill Suh Sung Ho Ryu Taehoon G. Lee 《Proteomics》2010,10(3):394-405
Adipogenesis is a complex process that is accompanied by a number of molecular events. In this study, a proteomic approach was adopted to identify secretory factors associated with adipogenesis. A label‐free shotgun proteomic strategy was implemented to analyze proteins secreted by human adipose stromal vascular fraction cells and differentiated adipocytes. A total of 474 proteins were finally identified and classified according to quantitative changes and statistical significances. Briefly, 177 proteins were significantly upregulated during adipogenesis (Class I), whereas 60 proteins were significantly downregulated (Class II). Changes in the expressions of several proteins were confirmed by quantitative RT‐PCR and immunoblotting. One obvious finding based on proteomic data was that the amounts of several extracellular modulators of Wnt and transforming growth factor‐β (TGF‐β) signaling changed during adipogenesis. The expressions of secreted frizzled‐related proteins, dickkopf‐related proteins, and latent TGF‐β‐binding proteins were found to be altered during adipogenesis, which suggests that they participate in the fine regulation of Wnt and TGF‐β signaling. This study provides useful tools and important clues regarding the roles of secretory factors during adipogenic differentiation, and provides information related to obesity and obesity‐related metabolic diseases. 相似文献
52.
Byoung-Joon Park Soo-Je Park Dae-No Yoon Stefan Schouten Jaap S. Sinninghe Damsté Sung-Keun Rhee 《Applied and environmental microbiology》2010,76(22):7575-7587
The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [13C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments.Archaea have long been known as extremophiles, since most cultivated archaeal strains were cultivated from extreme environments, such as acidic, hot, and high-salt environments. The view of archaea as extremophiles (i.e., acidophiles, thermophiles, and halophiles) has radically changed by the application of molecular technologies, including PCR in environmental microbiology. Using Archaea-specific PCR primers, novel archaeal 16S rRNA gene sequences were discovered in seawater (23, 27). Following these discoveries, an ever-increasing and unexpectedly high variety of archaeal 16S rRNA gene sequences has been reported from diverse “nonextreme” environments (67). This indicates that archaea are, like bacteria, ubiquitous in the biosphere rather than exclusively inhabiting specific extreme niches. Archaea are abundant in water columns of some oceanic provinces (33, 36) and deep-subsea floor sediments (11, 12, 48). Despite the increasing number of reports of the diversity and abundance of these nonextreme archaea by molecular ecological studies, their physiology and ecological roles have remained enigmatic.Oxidation of ammonia, a trait long thought to be exclusive to the domain Bacteria (13), was recently suggested to be a trait of archaea of the crenarchaeal groups I.1a and I.1b, based on a metagenome analysis (79) and supported by the discovery of archaeal amoA-like genes in environmental shotgun sequencing studies of Sargasso Sea water (80) and genomic analysis of “Candidatus Cenarchaeum symbiosum,” a symbiont of a marine sponge (30). Molecular ecological studies indicated that these ammonia-oxidizing archaea (AOA) are often predominant over ammonia-oxidizing bacteria (AOB) in ocean waters (9, 53, 87), soils (17, 47), and marine sediments (61). Critical evidence for autotrophic archaeal ammonia oxidation was obtained by the characterization of the first cultivated mesophilic crenarchaeon (group I.1a), “Candidatus Nitrosopumilus maritimus SCM1,” from an aquarium (38), and a related archaeon from North Sea water (87) and subsequently by enrichment of thermophilic AOA (22, 31). Whole-genome-based phylogenetic studies recently indicated that the nonthermophilic crenarchaea, including the AOA, likely form a phylum separate from the Crenarchaeota and Euryarchaeota phyla (15, 16, 72). This proposed new phylum was called Thaumarchaeota (15).Microorganisms in marine sediments contribute significantly to global biogeochemical cycles because of their abundance (85). Nitrification is essential to the nitrogen cycle in marine sediments and may be metabolically coupled with denitrification and anaerobic ammonium oxidation, resulting in the removal of nitrogen as molecular nitrogen and the generation of greenhouse gases, such as nitrous oxide (19, 75). Compared with studies on archaeal nitrification in the marine water column, only limited information on archaeal nitrification in marine sediments is available so far. Archaeal amoA genes have been retrieved from marine and coastal sediments (8, 26, 61), and the potentially important role of AOA in nitrification has been suggested based on the abundance of archaeal amoA genes relative to that of bacterial amoA genes in surface marine sediments from Donghae (South Korea) (61). Cultivation of AOA, although difficult (38), remains essential to estimating the metabolic potential of archaea in environments such as soils (47) and marine sediments (61). Here, we report the successful enrichment of AOA of crenarchaeal group I.1a from marine sediments by employing a coculture with sulfur-oxidizing bacteria (SOB) which was maintained for ca. 20 months with biweekly transfers. In this way, we were able to characterize AOA from marine sediments, providing a clue for the role of AOA in the nitrogen cycle of marine sediments. 相似文献
53.
Nam Jin Noh Yowhan Son Sue Kyoung Lee Tae Kyung Yoon Kyung Won Seo Choonsig Kim Woo-Kyun Lee Sang Won Bae Jaehong Hwang 《Journal of plant research》2010,123(4):411-419
We investigated the influence of stand density [938 tree ha−1 for high stand density (HD), 600 tree ha−1 for medium stand density (MD), and 375 tree ha−1 for low stand density (LD)] on soil CO2 efflux (R
S) in a 70-year-old natural Pinus densiflora S. et Z. forest in central Korea. Concurrent with R
S measurements, we measured litterfall, total belowground carbon allocation (TBCA), leaf area index (LAI), soil temperature
(ST), soil water content (SWC), and soil nitrogen (N) concentration over a 2-year period. The R
S (t C ha−1 year−1) and leaf litterfall (t C ha−1 year−1) values varied with stand density: 6.21 and 2.03 for HD, 7.45 and 2.37 for MD, and 6.96 and 2.23 for LD, respectively. In
addition, R
S was correlated with ST (R
2 = 0.77–0.80, P < 0.001) and SWC (R
2 = 0.31–0.35, P < 0.001). It appeared that stand density influenced R
S via changes in leaf litterfall, LAI and SWC. Leaf litterfall (R
2 = 0.71), TBCA (R
2 = 0.64–0.87), and total soil N contents in 2007 (R
2 = 0.94) explained a significant amount of the variance in R
S (P < 0.01). The current study showed that stand density is one of the key factors influencing R
S due to the changing biophysical and environmental factors in P. densiflora. 相似文献
54.
Microcystin Production by Microcystis aeruginosa in a Phosphorus-Limited Chemostat 总被引:4,自引:0,他引:4 下载免费PDF全文
The production of microcystins (MC) from Microcystis aeruginosa UTEX 2388 was investigated in a P-limited continuous culture. MC (MC-LR, MC-RR, and MC-YR) from lyophilized M. aeruginosa were extracted with 5% acetic acid, purified by a Sep-Pak C18 cartridge, and then analyzed by high-performance liquid chromatography with a UV detector and Nucleosil C18 reverse-phase column. The specific growth rate (μ) of M. aeruginosa was within the range of 0.1 to 0.8/day and was a function of the cellular P content under a P limitation. The N/P atomic ratio of steady-state cells in a P-limited medium varied from 24 to 15 with an increasing μ. The MC-LR and MC-RR contents on a dry weight basis were highest at μ of 0.1/day at 339 and 774 μg g−1, respectively, while MC-YR was not detected. The MC content of M. aeruginosa was higher at a lower μ, whereas the MC-producing rate was linearly proportional to μ. The C fixation rate at an ambient irradiance (160 microeinsteins m−2 s−1) increased with μ. The ratios of the MC-producing rate to the C fixation rate were higher at a lower μ. Accordingly, the growth of M. aeruginosa was reduced under a P limitation due to a low C fixation rate, whereas the MC content was higher. Consequently, increases in the MC content per dry weight along with the production of the more toxic form, MC-LR, were observed under more P-limited conditions. 相似文献
55.
56.
Solubilized components of the vitamin D3-25-hydroxylase, isolated from intact rat liver microsomes known to catalyze the C-25 oxidation of vitamin D3in vitro, have been separated into two submicrosomal fractions enriched in detergent-solubilized NADPH-cytochrome c reductase and cytochrome P-450 or P-448. The P-450 hemoprotein-containing fraction was obtained by solubilization with cholic acid followed by treatment with the nonionic detergent, Emulgen 911, yielding a final preparation with a specific content of 7.25 nmol/mg microsomal protein. The reduced triphosphopyridine nucleotide-dependent cytochrome P-450 reductase activity, as detected by its ability to reduce the artificial electron acceptor, cytochrome c, was isolated free of cytochromes b5 or P-450 by solubilization with deoxycholate and chromatography on DEAE-cellulose. The reductase component was found to exhibit kinetic properties with Michaelis constants: Km(NADPH) = 3.14 μM, Km(NADH) = 31.25 μM, and Km(cyt c) = 12.34 μM. The NADPH-cytochrome c reductase activity was sensitive to NADPH-reversible inhibition by NADP, but not rotenone or cyanide. When the isolated components were incubated in the presence of an NADPH-generating system and carbon monoxide under anaerobic conditions, enzymatic reduction of the P-450 hemoprotein was measured by the appearance of characteristic absorbances at 420 and 450 nm of the reduced carbon monoxide vs. reduced difference spectrum. Furthermore, when the soluble submicrosomal components were reconstituted with excess reduced triphosphopyridine nucleotide, 3H-labeled vitamin D3, and soluble cytosolic supernatant, full vitamin D3-25-hydroxylase activity was restored at rates of up to 7.68 pmol/h/mg protein, with an apparent turnover number of cytochrome P-450 of 1.16 to 1.20 under conditions where the concentrations of the hemoprotein were rate limiting for net product formation. These results strongly support the hypothesis that the rat liver microsomal mixed-function oxidase, vitamin D3-25-hydroxylase, consists of at least two membrane-bound protein components, NADPH-cytochrome c reductase and a cytochrome P-450 terminal oxidase, for the catalytic conversion of vitamin D3 to 25-hydroxyvitamin D3. 相似文献
57.
Induction of an organ-specific autoimmune disease, lymphocytic hypophysitis, in hamsters by recombinant rubella virus glycoprotein and prevention of disease by neonatal thymectomy. 下载免费PDF全文
J W Yoon D S Choi H C Liang H S Baek I Y Ko H S Jun S Gillam 《Journal of virology》1992,66(2):1210-1214
Glycosylated, membrane-associated E1 (58-kDa) and E2 (47- to 49-kDa) rubella virus proteins and unglycosylated nucleoprotein C (33 kDa), from separately expressed vaccinia virus recombinants, were injected into golden Syrian hamsters. Rubella virus E1 and E2 glycoproteins consistently induced an organ-specific autoimmune disease, autoimmune lymphocytic hypophysitis, which was evidenced by the induction of autoantibodies against pituitary cells and by lymphocytic infiltration of the pituitary. Neonatal thymectomy prevented the disease. In contrast, rubella virus nucleoprotein C did not induce either autoantibodies against pituitary cells or lymphocytic infiltration of the pituitary. This finding raises the possibility that virus-specific protein itself can induce an organ-specific autoimmune disease in certain circumstances. 相似文献
58.
Nonstructural protein 5A protein (NS5A) of hepatitis C virus (HCV) plays an important role in the regulation of viral replication, interferon resistance, and apoptosis. HCV NS5A comprises three domains. Recently the structure of domain 1 has been determined, revealing a structural scaffold with a novel zinc-binding motif and a disulfide bond. At present, the structures of domains 2 and 3 remain undefined. Domain 2 of HCV NS5A (NS5A-D2) is important for functions of NS5A and involved in molecular interactions with its own NS5B and PKR, a cellular interferon-inducible serine/threonine specific protein kinase. In this study we performed structural analysis of domain 2 by multinuclear nuclear magnetic resonance (NMR) spectroscopy. The analysis of the backbone 1H, 13C, and 15N resonances, 3JHNalpha coupling constants ,and 3D NOE data indicates that NS5A-D2 lacks secondary structural elements and reveals characteristics of unfolded proteins. NMR relaxation parameters confirmed the lack of rigid structure in the domain. The absence of an ordered conformation and the observation of a highly dynamic behavior of NS5A-D2 may provide an underlying molecular basis on its physiological function to allow NS5A-D2 to interact with a variety of biological partners. 相似文献
59.
60.
Yoon SH Park HM Kim JE Lee SH Choi MS Kim JY Oh DK Keasling JD Kim SW 《Biotechnology progress》2007,23(3):599-605
When pT-LYCm4 containing lycopene synthetic genes was co-transformed with pSUcrtY or pSHcrtY containing crtY gene of Pantoea ananatis (P. ananatis) or Pantoea agglomerans (P. agglomerans), beta-carotene productions of 36 and 35 mg/L were obtained, respectively. No lycopene was detected in the beta-carotene production culture. pT-HB, constructed by addition of P. ananatis crtY gene into pT-LYCm4, was used for co-transformation with pSdxs and pSSN12Didi, which increased isopentenyl diphosphate and dimethylallyl diphosphate synthesis. beta-Carotene production significantly increased 1.5-fold (51 mg/L) with the amplification of the dxs gene through pSdxs and 4-fold (135 mg/L) with the mevalonate bottom pathway of pSSN12Didi in the presence of 3.3 mM mevalonate. The pT-DHB, constructed by integrating the dxs gene into pT-HB, was used for cotransformation of Escherichia coli (E. coli) harboring pSSN12Didi, resulting in beta-carotene production of 141 mg/L. Recombinant E. coli harboring pT-DHB and pSSN12Didi was used to maximize beta-carotene production by adjusting the available amounts of glycerol, a carbon source, and mevalonate, the precursor of the mevalonate bottom pathway. When recombinant E. coli was given 16.5 mM mevalonate and 2.5% (w/v) glycerol, beta-carotene production of 503 mg/L in concentration and 49.3 mg/g DCW in content was obtained at 144 h, which was the highest level of carotenoid production in E. coli ever reported in the literature. 相似文献