全文获取类型
收费全文 | 1030篇 |
免费 | 69篇 |
专业分类
1099篇 |
出版年
2023年 | 5篇 |
2022年 | 17篇 |
2021年 | 18篇 |
2020年 | 7篇 |
2019年 | 16篇 |
2018年 | 30篇 |
2017年 | 25篇 |
2016年 | 55篇 |
2015年 | 86篇 |
2014年 | 85篇 |
2013年 | 92篇 |
2012年 | 89篇 |
2011年 | 91篇 |
2010年 | 72篇 |
2009年 | 73篇 |
2008年 | 62篇 |
2007年 | 72篇 |
2006年 | 42篇 |
2005年 | 51篇 |
2004年 | 42篇 |
2003年 | 30篇 |
2002年 | 16篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1989年 | 1篇 |
1986年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有1099条查询结果,搜索用时 0 毫秒
991.
Brassinosteroids (BRs) are plant hormones that affect diverse aspects of plant development. Various BR-biosynthetic or BR-signaling mutants contribute to BR functions and signaling events in many plant species. The BR receptor brassinosteroid-Insensitive 1 (BRI1) plays critical roles in BR signaling. We previously identified a weak bri1 mutant allele, bri1-120, that has a mutation site in the extracellular domain of BRI1. Here, genetic suppressor screening revealed that a PHYB gene mutation led to suppression of ethyl methanesulfonate (EMS)-mutagenized bri1-120. The morphology of bri1-120phyB-1 indicated that compact and rounded phenotypes of bri1-120 were suppressed. However, BR sensitivity of the bri1-120phyB-1 was only recovered in hypocotyl elongation, and overexpression of PHYB in bri1-120 did not enhance bri1-120 phenotypes. To further investigate the relationship between BR and light signalings, we examined the seed germination pattern and hypocotyl growth of bri1-120phyB-1 as compared to that of each single mutant under various light conditions. Seed germination in bri1-120phyB-1 was higher than in both the single mutants. Hypocotyl length in bri1-120phyB-1 was intermediate between that of bri1-120 and phyB-1, whereas sensitivity to red light in bri1-120phyB-1 remained the same as in phyB-1. These results suggest that BR and light signalings affect diverse cellular responses both together and independently, depending on the specific cellular processes. 相似文献
992.
Cho SG Kim JW Lee YH Hwang HS Kim MS Ryoo K Kim MJ Noh KT Kim EK Cho JH Yoon KW Cho EG Park HS Chi SW Lee MJ Kang SS Ichijo H Choi EJ 《The Journal of cell biology》2003,163(1):71-81
Diverse stimuli initiate the activation of apoptotic signaling pathways that often causes nuclear DNA fragmentation. Here, we report a new antiapoptotic protein, a caspase-activated DNase (CAD) inhibitor that interacts with ASK1 (CIIA). CIIA, by binding to apoptosis signal-regulating kinase 1 (ASK1), inhibits oligomerization-induced ASK1 activation. CIIA also associates with CAD and inhibits the nuclease activity of CAD without affecting caspase-3-mediated ICAD cleavage. Overexpressed CIIA reduces H2O2- and tumor necrosis factor-alpha-induced apoptosis. CIIA antisense oligonucleotides, which abolish expression of endogenous CIIA in murine L929 cells, block the inhibitory effect of CIIA on ASK1 activation, deoxyribonucleic acid fragmentation, and apoptosis. These findings suggest that CIIA is an endogenous antagonist of both ASK1- and CAD-mediated signaling. 相似文献
993.
Jihun Lee Hyun Ah Kang Jin Soo Bae Kyu Dae Kim Kyoung Hoon Lee Ki Jung Lim 《MABS-AUSTIN》2018,10(4):547-571
The evaluation of analytical similarity has been a challenging issue for the biosimilar industry because the number of lots for reference and biosimilar products available at the time of development are limited, whilst measurable quality attributes of target molecule are numerous, which can lead to potential bias or false negative/positive conclusions regarding biosimilarity. Therefore, appropriate statistical analyses are highly desirable to achieve a high level of confidence in the similarity evaluation. A recent guideline for the risk-based statistical approaches recommended by the US Food and Drug Administration provides useful tools to systematically evaluate analytical similarity of biosimilar products compared with reference products. Here, we evaluated analytical similarity of CT-P6, a biosimilar product of trastuzumab, with the reference products (EU-Herceptin® or US-Herceptin®) following these statistical approaches. Various quality attributes of trastuzumab were first ranked based on the clinical impact of each attribute and subsequently adjusted to one of three tiers (Tier 1, Tier 2 and Tier 3) considering the characteristics of the assay, the level of attribute present and the feasibility of statistical analysis. Two biological activities with highest potential clinical impact were evaluated by an equivalent test (Tier 1), and other bioactivities and structural/physicochemical properties relevant to the clinical impact were evaluated by a quality range approach (Tier 2). The attributes with low risk ranking or qualitative assay were evaluated by visual comparison (Tier 3). Analytical similarity assessment analyzed by the three tiers clearly demonstrated that CT-P6 exhibits highly similar structural and physicochemical properties, as well as functional activities, compared with the reference products. There were small differences observed in a few quality attributes between CT-P6 and the reference products, but the differences were very minor, and unlikely to impact on clinical outcome. The recently reported equivalent clinical efficacy of CT-P6 with the reference product further supports that CT-P6 is highly similar compared with the reference product in the view of totality-of-evidence. 相似文献
994.
Dae-Jung?Kang Jong-Hyuk?Im Jae-Hoon?Kang Kyoung?Heon?KimEmail author 《Bioprocess and biosystems engineering》2015,38(7):1281-1290
Calcitriol is an important drug used for treating osteoporosis, which can be produced from vitamin D3. The current method of producing calcitriol from vitamin D3 during cultivation of microbial cells results in low yields of calcitriol and high purification costs. Therefore, in this study, the steps of cell cultivation and bioconversion of vitamin D3 to calcitriol were separated. Cells of Pseudonocardia sp. KCTC 1029BP were utilized as a whole cell catalyst to produce a high level and yield of calcitriol from vitamin D3. In addition, the effects of bioconversion buffers, cyclodextrins, and metal salts on the production of calcitriol were comparatively examined and selected for incorporation in the bioconversion medium, and their compositions were statistically optimized. The optimal bioconversion medium was determined as consisting of 15 mM Trizma base, 25 mM sodium succinate, 2 mM MgSO4, 0.08 % β-cyclodextrin, 0.1 % NaCl, 0.2 % K2HPO4, and 0.03 % MnCl2. Using this optimal bioconversion medium, 61.87 mg/L of calcitriol, corresponding to a 30.94 % mass yield from vitamin D3, was produced in a 75-L fermentor after 9 days. This calcitriol yield was 3.6 times higher than that obtained using a bioconversion medium lacking β-cyclodextrin, NaCl, K2HPO4, and MnCl2. In conclusion, utilizing whole cells of Pseudonocardia sp. KCTC 1029BP together with the optimal bioconversion medium markedly enhanced the production of calcitriol from vitamin D3. 相似文献
995.
nNOS (neuronal nitric oxide synthase) is a constitutively expressed enzyme responsible for the production of NO* from L-arginine and O2. NO* acts as both an intra- and an inter-cellular messenger that mediates a variety of signalling pathways. Previous studies from our laboratory have demonstrated that nNOS production of NO* blocks Ca2+-ionophore-induced activation of ERK1/2 (extracellular-signal-regulated kinase 1/2) of the mitogen-activated protein kinases through a mechanism involving Ras G-proteins and Raf-1 kinase. Herein we describe a mechanism by which NO* blocks Ca2+-mediated ERK1/2 activity through direct modification of H-Ras. Ca2+-mediated ERK1/2 activation in NO*-producing cells could be restored by exogenous expression of constitutively active mitogen-activated protein kinase kinase 1. In contrast, exogenous expression of constitutively active mutants of Raf-1 and H-Ras only partially restored ERK1/2 activity, by 50% and 10% respectively. On the basis of these findings, we focused on NO*-mediated mechanisms of H-Ras inhibition. Assays for GTP loading and H-Ras interactions with the Ras-binding domain on Raf-1 demonstrated a decrease in H-Ras activity in the presence of NO*. We demonstrate that S-nitrosylation of H-Ras occurs in nNOS-expressing cells activated with Ca2+ ionophore. Mutation of a putative nitrosylation site at Cys118 inhibited S-nitrosylation and restored ERK1/2 activity by constitutively active H-Ras even in the presence of NO*. These findings indicate that intracellular generation of NO* by nNOS leads to S-nitrosylation of H-Ras, which interferes with Raf-1 activation and propagation of signalling through ERK1/2. 相似文献
996.
997.
Eun Jung Jang Yun‐Seo Kil Hye Ryeon Park Sera Oh Hyo Kyeong Kim Mi Gyeong Jeong Eun Kyoung Seo Eun Sook Hwang 《化学与生物多样性》2014,11(12):1954-1962
Tuberostemonine stereoisomers are natural alkaloids found in Stemona tuberosa, that are known to have anti‐inflammatory and anti‐infective properties. Tuberostemonine alkaloids inhibit inflammation by suppressing the expression of inflammatory mediators such as cyclooxygenase and nitric oxide synthase. However, the direct immunomodulatory properties of tuberostemonine alkaloids in T cells have not been elucidated so far. In this study, the activities in T cells of tuberostemonine N (TbN) and a novel alkaloid, tuberostemonine O (TbO), isolated from S. tuberosa, were investigated. Although TbN did not have a significant effect on cytokine production in splenic T cells, TbO selectively suppressed interleukin (IL)‐2 production. Moreover, TbO, but not TbN, significantly inhibited IL‐2 production by primary CD4+ T cells and delayed the T‐cell proliferation in a dose‐dependent manner. Addition of excess recombinant IL‐2 restored the decreased cell‐division rates in TbO‐treated CD4+ T cells to control levels. Collectively, these findings suggest that the immunomodulatory effects of TbO occurred by the suppression of IL‐2 expression and IL‐2‐induced T‐cell proliferation, suggesting a potential beneficial role of tuberostemonine alkaloids for the control of chronic inflammatory and autoimmune diseases caused by hyperactivated T cells. 相似文献
998.
ObjectiveTo compare central retinal venous pressure (CRVP) among eyes with and without optic disc hemorrhage (ODH) in bilateral normal-tension glaucoma (NTG) patients and NTG eyes without an episode of ODH.MethodsIn this prospective study, 22 bilateral NTG patients showing a unilateral ODH and 29 bilateral NTG patients without an episode of ODH were included. Eyes were categorized into group A (n = 22, eyes with ODH), group B (n = 22, fellow eyes without ODH), and group C (n = 29, NTG eyes without an episode of ODH). A contact lens ophthalmodynamometer was used to measure CRVP and central retinal arterial pressure (CRAP).ResultsIntraocular pressure (IOP) measured on the day of contact lens ophthalmodynamometry showed no difference among groups. However, the mean baseline IOP in group A was significantly lower than that in group C (P = .008). The CRVP in group A (29.1 ± 10.8 mmHg) was significantly lower than that in group C (40.1 ± 8.8 mmHg, P = .001), but similar to that in group B (30.5 ± 8.7 mmHg, P = .409). A similar relationship was noted for CRAP. No significant eye-associated variable for ODH was found in group A and B by conditional logistic regression analysis (all P > 0.05). However, multivariate logistic regression analysis in groups A and C revealed that low mean baseline IOP (odds ratio [OR] = 0.69, 95% confidence interval [CI] 0.49-0.98, P = 0.043) and low CRVP (OR = 0.88, 95% CI 0.80-0.95, P = 0.003) were associated with ODH.ConclusionsCRVP was lower in NTG eyes with ODH than in eyes without an episode of ODH, but similar to that of fellow eyes without ODH. These imply less likelihood of association between increased central retinal venous resistance and ODH. 相似文献
999.
Se Kye Kim Moon Kyoo Park Sang Hoon Kim Kwang Gun Oh Kyoung Hwa Jung Chong-Hae Hong Jang W. Yoon Young Gyu Chai 《Current microbiology》2014,69(4):436-444
RelA and SpoT synthesize ppGpp, a key effector molecule that facilitates the adaptation of bacteria to nutrient starvation and other stresses, known as the stringent response. To investigate the role of Rsh Bant , a putative RelA/SpoT homolog (encoded by BAS4302) in Bacillus anthracis, we examined the alteration of the secretome profiles after the overexpression of a functional His-Rsh Bant protein in the B. anthracis strain Sterne at the stationary growth phase. In the ppGpp-deficient E. coli mutant strain CF1693, overexpression of Rsh Bant restored a ppGpp-dependent growth defect on minimal glucose media. The secretome profiles obtained using a two-dimensional electrophoresis (2-DE) analysis were altered by overexpression of Rsh Bant in B. anthracis. Among the 66 protein spots differentially expressed >1.5-fold, the 29 proteins were abundant for further identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Functional categorization of those proteins implicated their involvement in various biological activities. Taken together, our results imply that overexpression of a functional His-Rsh Bant can lead to the increased levels of intracellular ppGpp in B. anthracis, resulting in the significant changes in its secretome profiling. The stringent response-controlled proteins identified are likely useful as potential targets for serodiagnostic applications. 相似文献
1000.
Takahashi M Takahashi Y Takahashi K Zolotaryov FN Hong KS Iida K Okimura Y Kaji H Chihara K 《Biochemical and biophysical research communications》2007,364(4):1037-1042
Accumulating evidence suggests an association between obesity and adipose tissue inflammation. Chemokines are involved in the regulation of inflammation status. Chemokine (C-X-C motif) ligand 14 (CXCL14) is known to be a chemoattractant for monocyte and dendritic cells. Recently, it was reported that CXCL14-deficient mice show resistance to high-fat diet-induced obesity. In this study, we identified CXCL14 as a growth hormone (GH)-induced gene in HepG2 hepatoma cells. Substantial in vivo expression of CXCL14 was detected in the adipose tissue and liver. Its expression and secretion were strikingly increased by insulin administration and high-fat diet. Intriguingly, incubation of 3T3-L1 adipocytes with CXCL14 stimulated insulin-dependent glucose uptake. Further, this effect was associated with enhanced insulin signaling. CXCL14 enhanced the insulin-induced tyrosine phosphorylation of insulin receptors and insulin receptor substrate-1. These results suggest that CXCL14 plays a causal role in high-fat diet-induced obesity. 相似文献