首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7246篇
  免费   468篇
  国内免费   3篇
  7717篇
  2024年   9篇
  2023年   23篇
  2022年   102篇
  2021年   137篇
  2020年   76篇
  2019年   117篇
  2018年   162篇
  2017年   145篇
  2016年   259篇
  2015年   449篇
  2014年   493篇
  2013年   537篇
  2012年   690篇
  2011年   625篇
  2010年   428篇
  2009年   360篇
  2008年   477篇
  2007年   404篇
  2006年   371篇
  2005年   337篇
  2004年   290篇
  2003年   247篇
  2002年   211篇
  2001年   135篇
  2000年   134篇
  1999年   121篇
  1998年   50篇
  1997年   35篇
  1996年   28篇
  1995年   26篇
  1994年   24篇
  1993年   22篇
  1992年   32篇
  1991年   27篇
  1990年   15篇
  1989年   14篇
  1988年   10篇
  1987年   6篇
  1986年   11篇
  1982年   4篇
  1980年   4篇
  1979年   5篇
  1977年   6篇
  1976年   4篇
  1974年   7篇
  1973年   4篇
  1972年   4篇
  1969年   4篇
  1967年   5篇
  1966年   5篇
排序方式: 共有7717条查询结果,搜索用时 11 毫秒
91.
In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. [BMB Reports 2015; 48(8): 479-484]  相似文献   
92.
93.
94.
Oh SY  Yoo DI  Shin Y  Kim HC  Kim HY  Chung YS  Park WH  Youk JH 《Carbohydrate research》2005,340(15):2376-2391
Crystalline structures of cellulose (named as Cell 1), NaOH-treated cellulose (Cell 2), and subsequent CO2-treated cellulose (Cell 2-C) were analyzed by wide-angle X-ray diffraction and FTIR spectroscopy. Transformation from cellulose I to cellulose II was observed by X-ray diffraction for Cell 2 treated with 15-20 wt% NaOH. Subsequent treatment with CO2 also transformed the Cell 2-C treated with 5-10 wt% NaOH. Many of the FTIR bands including 2901, 1431, 1282, 1236, 1202, 1165, 1032, and 897 cm(-1) were shifted to higher wave number (by 2-13 cm(-1)). However, the bands at 3352, 1373, and 983 cm(-1) were shifted to lower wave number (by 3-95 cm(-1)). In contrast to the bands at 1337, 1114, and 1058 cm(-1), the absorbances measured at 1263, 993, 897, and 668 cm(-1) were increased. The FTIR spectra of hydrogen-bonded OH stretching vibrations at around 3352 cm(-1) were resolved into three bands for cellulose I and four bands for cellulose II, assuming that all the vibration modes follow Gaussian distribution. The bands of 1 (3518 cm(-1)), 2 (3349 cm(-1)), and 3 (3195 cm(-1)) were related to the sum of valence vibration of an H-bonded OH group and an intramolecular hydrogen bond of 2-OH ...O-6, intramolecular hydrogen bond of 3-OH...O-5 and the intermolecular hydrogen bond of 6-O...HO-3', respectively. Compared with the bands of cellulose I, a new band of 4 (3115 cm(-1)) related to intermolecular hydrogen bond of 2-OH...O-2' and/or intermolecular hydrogen bond of 6-OH...O-2' in cellulose II appeared. The crystallinity index (CI) was obtained by X-ray diffraction [CI(XD)] and FTIR spectroscopy [CI(IR)]. Including absorbance ratios such as A1431,1419/A897,894 and A1263/A1202,1200, the CI(IR) was evaluated by the absorbance ratios using all the characteristic absorbances of cellulose. The CI(XD) was calculated by the method of Jayme and Knolle. In addition, X-ray diffraction curves, with and without amorphous halo correction, were resolved into portions of cellulose I and cellulose II lattice. From the ratio of the peak area, that is, peak area of cellulose I (or cellulose II)/total peak area, CI(XD) were divided into CI(XD-CI) for cellulose I and CI(XD-CII) for cellulose II. The correlation between CI(XD-CI) (or CI(XD-CII)) and CI(IR) was evaluated, and the bands at 2901 (2802), 1373 (1376), 897 (894), 1263, 668 cm(-1) were good for the internal standard (or denominator) of CI(IR), which increased the correlation coefficient. Both fraction of the absorbances showing peak shift were assigned as the alternate components of CI(IR). The crystallite size was decreased to constant value for Cell 2 treated at >or= 15 wt% NaOH. The crystallite size of Cell 2-C (cellulose II) was smaller than that of Cell 2 (cellulose I) treated at 5-10 wt% NaOH. But the crystallite size of Cell 2-C (cellulose II) was larger than that of Cell 2 (cellulose II) treated at 15-20 wt% NaOH.  相似文献   
95.
Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose- 2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase.  相似文献   
96.
The cDNA library of human pancreatic islets was screened with sera from patients with insulin-dependent diabetes mellitus (IDDM). From the library screening, we isolated a novel cDNA, RNA helicase-like protein (RHELP), which exhibited strong sequence homology to p68 RNA helicase, a prototypic member of the DEAD (Asp-Glu-Ala-Asp) box protein family. Sequence analysis of the cDNA revealed that RHELP contained DEAD sequence motif and other conserved motifs of the DEAD box protein family, indicating that RHELP is a new member of this family. DEAD box-containing proteins are involved in the RNA processing, ribosome assembly, spermatogenesis, embryogenesis, and cell growth and division. RHELP showed 42% and 44% amino acid sequence identity to human p68 RNA helicase and yeast DBP2 RNA helicase, respectively, among the DEAD box protein family. Northern blot analysis revealed that RHELP is expressed in most tissues including the liver, lung, tonsil, thymus, and muscle in addition to the pancreatic islets. In vivo or in vitro functions of RHELP as a putative RNA helicase and its potential role as a diabetic autoantigen need to be further investigated.  相似文献   
97.
Solid-state NMR has been used to examine the binding of N′-4-[(4-fluorophenyl)benzyl)]chloroeremomycin, a fluorinated analogue of oritavancin, to isolated protoplast membranes and whole-cell sucrose-stabilized protoplasts of Staphylococcus aureus, grown in media containing [1-13C]glycine and l-[?-15N]lysine. Rotational-echo double-resonance NMR was used to characterize the binding by estimating internuclear distances from 19F of oritavancin to 13C and 15N labels of the membrane-associated peptidoglycan and to the 31P of the phospholipid bilayer of the membrane. In isolated protoplast membranes, both with and without 1 M sucrose added to the buffer, the nascent peptidoglycan was extended away from the membrane surface and the oritavancin hydrophobic side chain was buried deep in the exposed lipid bilayer. However, there was no N′-4-[(4-fluorophenyl)benzyl)]chloroeremomycin binding to intact sucrose-stabilized protoplasts, even though the drug bound normally to the cell walls of whole cells of S. aureus in the presence of 1 M sucrose. As shown by the proximity of peptidoglycan-bridge 13C labels to phosphate 31P, the nascent peptidoglycan of the intact protoplasts was confined to the membrane surface.  相似文献   
98.
A new species, Trichoderma songyi, was found to be associated with the pine mushroom (Tricholoma matsutake) in Korea. This species was isolated from three different substrates: Tricholoma matsutake basidiomata, as well as roots of Pinus densiflora and soil in the fairy ring. Based on its molecular and phenotypic characteristics, we demonstrate that Trichoderma songyi is unique and distinguishable from closely related species. We performed phylogenetic analyses based on two molecular markers, the genes for both translation elongation factor 1-alpha and the second largest subunit of RNA polymerase II. Phylogenetic analyses showed that Trichoderma songyi is closely related to Trichoderma koningii aggregate and Trichoderma caerulescens. Morphologically, Trichoderma songyi can be distinguished from these closely related taxa by its growth rates, colony morphology on PDA in darkness, and coconut-like odour. Due to the economic importance of the pine mushroom, the relationship between Trichoderma songyi and Tricholoma matsutake should be studied further.  相似文献   
99.
100.
Liquid chromatographic enantiomer separation of several N‐benzyloxycarbonyl (CBZ) and Ntert‐butoxycarbonyl (BOC) α‐amino acids and their corresponding ethyl esters was performed on covalently immobilized chiral stationary phases (CSPs) (Chiralpak IA and Chiralpak IB) and coated‐type CSPs (Chiralpak AD and Chiralcel OD) based on polysaccharide derivatives. The solvent versatility of the covalently immobilized CSPs in enantiomer separation of N‐CBZ and BOC‐α‐amino acids and their ester derivatives was shown and the chromatographic parameters of their enantioselectivities and resolution factors were greatly influenced by the nature of the mobile phase. In general, standard mobile phases using 2‐propanol and hexane on Chiralpak IA showed fairly good enantioselectivities for resolution of N‐CBZ and BOC‐α‐amino acids and their esters. However, 50% MTBE/hexane (v/v) for resolution of N‐CBZ‐α‐amino acids ethyl esters and 20% THF/hexane (v/v) for resolution of N‐BOC‐α‐amino acids ethyl esters afforded the greatest enantioselectivities on Chiralpak IA. Also, liquid chromatographic comparisons of the enantiomer resolution of these analytes were made on amylose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IA and Chiralpak AD) and cellulose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IB and Chiralcel OD). Chiralpak AD and/or Chiralcel OD showed the highest enantioselectivities for resolution of N‐CBZ‐α‐amino acids and esters, while Chiralpak AD or Chiralpak IA showed the highest resolution of N‐BOC‐α‐amino acids and esters. Chirality 2009. © 2008 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号