首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7246篇
  免费   468篇
  国内免费   3篇
  7717篇
  2024年   9篇
  2023年   23篇
  2022年   102篇
  2021年   137篇
  2020年   76篇
  2019年   117篇
  2018年   162篇
  2017年   145篇
  2016年   259篇
  2015年   449篇
  2014年   493篇
  2013年   537篇
  2012年   690篇
  2011年   625篇
  2010年   428篇
  2009年   360篇
  2008年   477篇
  2007年   404篇
  2006年   371篇
  2005年   337篇
  2004年   290篇
  2003年   247篇
  2002年   211篇
  2001年   135篇
  2000年   134篇
  1999年   121篇
  1998年   50篇
  1997年   35篇
  1996年   28篇
  1995年   26篇
  1994年   24篇
  1993年   22篇
  1992年   32篇
  1991年   27篇
  1990年   15篇
  1989年   14篇
  1988年   10篇
  1987年   6篇
  1986年   11篇
  1982年   4篇
  1980年   4篇
  1979年   5篇
  1977年   6篇
  1976年   4篇
  1974年   7篇
  1973年   4篇
  1972年   4篇
  1969年   4篇
  1967年   5篇
  1966年   5篇
排序方式: 共有7717条查询结果,搜索用时 13 毫秒
81.
82.
Asymmetric cell division is a universal strategy to generate diverse cell types necessary for patterning and proliferation of all eukaryotes. The development of haploid male gametophytes (pollen grains) in flowering plants is a remarkable example in which division asymmetry governs the functional specialization and germline differentiation essential for double fertilization. The male gametophyte is patterned via two mitotic divisions resulting in three highly differentiated daughter cells at maturity, a vegetative cell and two sperm cells. The first asymmetric division segregates a unique male germ cell from an undetermined haploid microspore and is executed in an elaborate sequence of cellular events. However the molecular mechanisms governing the division asymmetry in microspores are poorly understood. Recently we studied the phenotype of sidecar pollen (scp) mutants in detail, and demonstrated a requirement of SCP for both the correct timing and orientation of microspore division. SCP is a microspore-specific member of the LOB/AS2 domain family (LBD27/ASL29) showing that a plant-specific regulator plays a key role in oriented division of polarized microspores. Identification of SCP will serve as a new platform to further explore the largely unknown molecular networks regulating division asymmetry in microspores that establishes the male germline in flowering plants.Key words: sidecar pollen, microspore division, division asymmetry, male gametophyte development, male germline, LBD/ASL family proteinUnlike animals, flowering plants do not set aside a distinct germline from an early stage of the life cycle. Instead the angiosperm germline or germ cells are only segregated in the male and female gametophytes by a limited number of post-meiotic mitoses.1 However, in common with their metazoan cousins, angiosperms utilize division asymmetry for cellular patterning and differentiation of their germlines. Through the unique patterning of a ‘cell-within-a-cell’ structure with three highly differentiated cells, the male gametophyte (pollen grains) serves its biological role to deliver two sessile male gametes to the female gametophyte. Two sequential but different modes of mitotic divisions pattern the male gametophyte (Fig. 1).2 The first division (of the microspore) is asymmetric giving rise to two completely different daughter cells, a larger vegetative cell that will form the pollen tube and a smaller germ cell that is engulfed within the vegetative cell cytoplasm. The second division (of the germ cell) usually appears symmetric and produces a pair of linked sperm cells. Microspores artificially induced to undergo symmetric division using microtubule inhibitors lack the germ cell and fail to form the typical three-celled structure showing that asymmetry in microspore division is critical for patterning of the male gametophyte.4Open in a separate windowFigure 1Male gametophyte development in Arabidopsis (upper part) and mutations that block germ cell formation (lower part). (Upper part) Male gametophyte development involves two rounds of mitotic division. Prior to the first division the centrally positioned microspore nucleus migrates towards the radial wall (the future germ cell pole marked with an asterisk). At this eccentric site the polarized microspores undergo oriented mitosis and cytokinesis giving rise to highly unequal daughter cells, a vegetative cell and a germ cell of which the later produces a pair of sperm cells by symmetric division. (Lower part) Mutants that fail to establish a distinct germ cell arising from specific defects are illustrated. Arrows in red indicate the developmental origin of the phenotypic defects in mutants. Note that two daughter nuclei in the mutants are in grey to show that their cell fates have not yet been thoroughly investigated. n, nucleus; Vn, vegetative nucleus; Gn, generative nucleus; Gc, generative (or germ) cell; Sc, sperm cell; WT, wild type; gem1, gemini pollen1; scp, sidecar pollen; tio, two-in-one; hik/tes, hinkel/tetraspore 12a/12b, kinesin-12a/kinesin-12b.  相似文献   
83.
Lee  Changsu  Song  Hye Seon  Lee  Se Hee  Kim  Joon Yong  Rhee  Jin-Kyu  Roh  Seong Woon 《Archives of microbiology》2021,203(1):261-268
Archives of Microbiology - Extremely halophilic archaea (haloarchaea) belonging to the phylum Euryarchaeota have been found in high-salinity environments. In this study, Halarchaeum sp. CBA1220,...  相似文献   
84.
The Candida albicans agglutinin-like sequence (ALS) family encodes large cell surface glycoproteins that function in adhesion of the fungus to host and abiotic surfaces. Monoclonal antibodies (mAbs) specific for each Als protein were developed to study Als localization on the C. albicans surface. An anti-Als4 mAb demonstrated that Als4 covers the surface of yeast cells, with a greater abundance of Als4 on cells grown at 30 °C compared to 37 °C. On germ tubes, Als4 is localized in a restricted area proximal to the mother yeast. Immunolabeling with several anti-Als mAbs showed overlapping localization of Als1 and Als4 on yeast cells and Als1, Als3 and Als4 on germ tubes. Overlapping localization of Als proteins was also observed on yeast and hyphae recovered from mouse models of disseminated and oral candidiasis. Differences between Als localization in vivo and in vitro suggested changes in regulation of Als production in the host compared to the culture flask. Characterization with the anti-Als mAbs reveals the simultaneous presence and differences in relative abundance of Als proteins, creating an accurate image of Als representation and localization that can be used to guide conclusions regarding individual and collective Als protein function.  相似文献   
85.
Much of the current cell technology has enabled increased antibody production levels due to judicious nutrient feeding to raise cell densities and design better bioreactors. This study demonstrates that hybridomas can be hyperstimulated to produce higher immunoglobulin (lg) levels by suppressing cell growth and increasing culture longevity through adaptation to higher osmolarity media and addition of sodium butyrate. Prior to adaptation, cells placed in higher osmotic pressures (350 and 400 mOsm) were severely suppressed in growth down to 25% of the control (300 mOsm), although total lg titers achieved were similar to the control, approximately 140 mg/L. After a week of adaptation to 350 and 400 mOsm media, cell growth was not as dramatically suppressed, but considerably higher lg levels were attained at these elevated osmolarities. The highest yield of 265 mg/L was obtained at 350 mOsm compared to 140 mg/L at 300 mOsm, while maximum viable cell numbers dropped from 35 x 10(5) cells/mL to 31 x 10(5) cells/mL and culture longevity was extended by 20 h more than the control. Sodium butyrate, known to enhance protein production in other cell types, was then supplemented at a range of concentrations between 0.01 and 0.4 mM to the 350 mOsm culture to further enhance the lg levels. Butyrate at a concentration of 0.1 mM, in combination with osmotic pressure at 350 mOsm, further elevated the lg levels to 350 mg/L. Concomitantly, maximum viable cell numbers were reduced to 22 x 10(5) cells/mL, but culture longevity was extended by 40 h in the 0.1 mM butyrate supplemented culture compared to the control condition. Specific antibody productivity, q(Mab), continued to stay high during the stationary phase and was further elevated during the decline phase: thus, overall lg levels can be increased by 2.3 times by combining osmotic pressure and butyrate treatment. (c) 1993 John Wiley & Sons, Inc.  相似文献   
86.
87.
Kang TJ  Woo JH  Song HK  Ahn JH  Kum JW  Han J  Choi CY  Joo H 《FEBS letters》2002,517(1-3):211-214
Using Escherichia coli cell-free protein synthesis system and aminoacylated amber suppressor tRNA, we successfully inserted an unnatural amino acid S-(2-nitrobenzyl)cysteine into human erythropoietin. Three different types of translation stop suppression were observed and each of the three types was easily discerned with SDS-PAGE. Optimal conditions were established for correct stop and programmed suppressions. Since this system differentiates proteins produced by misreading of codons from those produced by programmed suppression, we conclude that this cell-free translation system that we describe in this paper will be of a great use for future investigations on translation stop processes.  相似文献   
88.
Paxillin is a focal adhesion adaptor protein, heavily phosphorylated at multiple tyrosine residues, as well as at serine 273 (S273), and is known to be critical for cytoskeleton rearrangement and cell migration. We previously found that paxillin plays a regulatory role in IL-3-dependent survival of Ba/F3 cells, a mouse pro-B cell line. In this study, by using overexpressed His6 tagged-paxillin as a bait, we found that DDX42, a DEAD-box RNA helicase, interacted with paxillin, inhibited apoptosis, and promoted polarization of Ba/F3 cells. His6 tagged-paxillin was stably overexpressed in Ba/F3 cells, pulled-down from cell lysates with Ni+-NTA beads, and analyzed by one-dimensional SDS-PAGE followed by LC–MS. We found that DDX42 co-precipitated with paxillin, as demonstrated by western blotting analysis of His6 tagged-paxillin precipitates with anti-DDX42 antibodies and His6 tagged-DDX42 precipitates with anti-paxillin antibodies. In addition, we observed a preferential interaction of DDX42 with the paxillin mutant, S273A, compared to the S273D mutant. Furthermore, DDX42 overexpression in Ba/F3 cells delayed the apoptosis induced by IL-3 deprivation and promoted restoration of the elongated shape in Ba/F3 cells induced by IL-3 re-supply after a 6?h-deprivation. These results suggested that DDX42 interacts with paxillin and participates in IL-3-dependent cell survival, as well as in the cytoskeletal rearrangements underlying polarization of Ba/F3 cells.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号