首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3839篇
  免费   310篇
  国内免费   1篇
  2022年   17篇
  2021年   37篇
  2020年   20篇
  2019年   29篇
  2018年   38篇
  2017年   44篇
  2016年   73篇
  2015年   83篇
  2014年   131篇
  2013年   177篇
  2012年   165篇
  2011年   214篇
  2010年   121篇
  2009年   105篇
  2008年   167篇
  2007年   183篇
  2006年   178篇
  2005年   150篇
  2004年   193篇
  2003年   159篇
  2002年   150篇
  2001年   151篇
  2000年   159篇
  1999年   122篇
  1998年   45篇
  1997年   48篇
  1996年   32篇
  1995年   47篇
  1994年   36篇
  1993年   31篇
  1992年   93篇
  1991年   83篇
  1990年   72篇
  1989年   84篇
  1988年   74篇
  1987年   85篇
  1986年   59篇
  1985年   70篇
  1984年   50篇
  1983年   30篇
  1982年   31篇
  1981年   27篇
  1979年   36篇
  1978年   20篇
  1977年   20篇
  1974年   22篇
  1973年   28篇
  1972年   15篇
  1971年   16篇
  1966年   17篇
排序方式: 共有4150条查询结果,搜索用时 15 毫秒
991.
Papillomavirus genomes are thought to be amplified to about 100 copies per cell soon after infection, maintained constant at this level in basal cells, and amplified for viral production upon keratinocyte differentiation. To determine the requirement for E1 in viral DNA replication at different stages, an E1-defective mutant of the human papillomavirus 16 (HPV16) genome featuring a translation termination mutation in the E1 gene was used. The ability of the mutant HPV16 genome to replicate as nuclear episomes was monitored with or without exogenous expression of E1. Unlike the wild-type genome, the E1-defective HPV16 genome became established in human keratinocytes only as episomes in the presence of exogenous E1 expression. Once established, it could replicate with the same efficiency as the wild-type genome, even after the exogenous E1 was removed. However, upon calcium-induced keratinocyte differentiation, once again amplification was dependent on exogenous E1. These results demonstrate that the E1 protein is dispensable for maintenance replication but not for initial and productive replication of HPV16.  相似文献   
992.
A major difference between vaccine and wild-type strains of measles virus (MV) in vitro is the wider cell specificity of vaccine strains, resulting from the receptor usage of the hemagglutinin (H) protein. Wild-type H proteins recognize the signaling lymphocyte activation molecule (SLAM) (CD150), which is expressed on certain cells of the immune system, whereas vaccine H proteins recognize CD46, which is ubiquitously expressed on all nucleated human and monkey cells, in addition to SLAM. To examine the effect of the H protein on the tropism and attenuation of MV, we generated enhanced green fluorescent protein (EGFP)-expressing recombinant wild-type MV strains bearing the Edmonston vaccine H protein (MV-EdH) and compared them to EGFP-expressing wild-type MV strains. In vitro, MV-EdH replicated in SLAM(+) as well as CD46(+) cells, including primary cell cultures from cynomolgus monkey tissues, whereas the wild-type MV replicated only in SLAM(+) cells. However, in macaques, both wild-type MV and MV-EdH strains infected lymphoid and respiratory organs, and widespread infection of MV-EdH was not observed. Flow cytometric analysis indicated that SLAM(+) lymphocyte cells were infected preferentially with both strains. Interestingly, EGFP expression of MV-EdH in tissues and lymphocytes was significantly weaker than that of the wild-type MV. Taken together, these results indicate that the CD46-binding activity of the vaccine H protein is important for determining the cell specificity of MV in vitro but not the tropism in vivo. They also suggest that the vaccine H protein attenuates MV growth in vivo.  相似文献   
993.
Many cell surface proteins in mammalian cells are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The predominant form of mammalian GPI contains 1-alkyl-2-acyl phosphatidylinositol (PI), which is generated by lipid remodeling from diacyl PI. The conversion of diacyl PI to 1-alkyl-2-acyl PI occurs in the ER at the third intermediate in the GPI biosynthetic pathway. This lipid remodeling requires the alkyl-phospholipid biosynthetic pathway in peroxisome. Indeed, cells defective in dihydroxyacetone phosphate acyltransferase (DHAP-AT) or alkyl-DHAP synthase express only the diacyl form of GPI-anchored proteins. A defect in the alkyl-phospholipid biosynthetic pathway causes a peroxisomal disorder, rhizomelic chondrodysplasia punctata (RCDP), and defective biogenesis of peroxisomes causes Zellweger syndrome, both of which are lethal genetic diseases with multiple clinical phenotypes such as psychomotor defects, mental retardation, and skeletal abnormalities. Here, we report that GPI lipid remodeling is defective in cells from patients with Zellweger syndrome having mutations in the peroxisomal biogenesis factors PEX5, PEX16, and PEX19 and in cells from patients with RCDP types 1, 2, and 3 caused by mutations in PEX7, DHAP-AT, and alkyl-DHAP synthase, respectively. Absence of the 1-alkyl-2-acyl form of GPI-anchored proteins might account for some of the complex phenotypes of these two major peroxisomal disorders.  相似文献   
994.
Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI.  相似文献   
995.
996.
Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes.  相似文献   
997.
Actin dynamics are implicated in various cellular processes, not only through the regulation of cytoskeletal organization, but also via the control of gene expression. In the present study we show that the Src family kinase substrate p130Cas (Cas is Crk-associated substrate) influences actin remodelling and concomitant muscle-specific gene expression, thereby regulating myogenic differentiation. In C2C12 myoblasts, silencing of p130Cas expression by RNA interference impaired F-actin (filamentous actin) formation and nuclear localization of the SRF (serum-response factor) co-activator MAL (megakaryocytic acute leukaemia) following the induction of myogenic differentiation. Consequently, formation of multinucleated myotubes was abolished. Re-introduction of wild-type p130Cas, but not its phosphorylation-defective mutant, into p130Cas-knockdown myoblasts restored F-actin assembly, MAL nuclear localization and myotube formation. Depletion of the adhesion molecule integrin β3, a key regulator of myogenic differentiation as well as actin cytoskeletal organization, attenuated p130Cas phosphorylation and MAL nuclear localization during C2C12 differentiation. Moreover, knockdown of p130Cas led to the activation of the F-actin-severing protein cofilin. The introduction of a dominant-negative mutant of cofilin into p130Cas-knockdown myoblasts restored muscle-specific gene expression and myotube formation. The results of the present study suggest that p130Cas phosphorylation, mediated by integrin β3, facilitates cofilin inactivation and promotes myogenic differentiation through modulating actin cytoskeleton remodelling.  相似文献   
998.
The Mediator subunit MED1 is essential for mammary gland development and lactation, whose contribution through direct interaction with estrogen receptors (ERs) is restricted to involvement in pubertal mammary gland development and luminal cell differentiation. Here, we provide evidence that the MED24-containing submodule of Mediator functionally communicates specifically with MED1 in pubertal mammary gland development. Mammary glands from MED1/MED24 double heterozygous knockout mice showed profound retardation in ductal branching during puberty, while single haploinsufficient glands developed normally. DNA synthesis of both luminal and basal cells were impaired in double mutant mice, and the expression of ER-targeted genes encoding E2F1 and cyclin D1, which promote progression through the G(1)/S phase of the cell cycle, was attenuated. Luciferase reporter assays employing double mutant mouse embryonic fibroblasts showed selective impairment in ER functions. Various breast carcinoma cell lines expressed abundant amounts of MED1, MED24, and MED30, and attenuated expression of MED1 and MED24 in breast carcinoma cells led to attenuated DNA synthesis and growth. These results indicate functional communications between the MED1 subunit and the MED24-containing submodule that mediate estrogen receptor functions and growth of both normal mammary epithelial cells and breast carcinoma cells.  相似文献   
999.
Visual area V4 is a midtier cortical area in the ventral visual pathway. It is crucial for visual object recognition and has been a focus of many studies on visual attention. However, there is no unifying view of V4's role in visual processing. Neither is there an understanding of how its role in feature processing interfaces with its role in visual attention. This review captures our current knowledge of V4, largely derived from electrophysiological and imaging studies in the macaque monkey. Based on recent discovery of functionally specific domains in V4, we propose that the unifying function of V4 circuitry is to enable selective extraction of specific functional domain-based networks, whether it be by bottom-up specification of object features or by top-down attentionally driven selection.  相似文献   
1000.
Two dipeptides, glycyl-L-leucine (G-L) and L-leucyl-glycine (L-G), the concentrations of which were 10 mmol/L, were degraded in subcritical water in order to understand fully the phenomena occurring during treatment. Treatment was administered in a stainless steel tubular reactor, which was connected to an HPLC pump and immersed in an oil bath at 200-240 °C, with residence times of 10-180 s. When G-L and L-G were treated, L-G and G-L significantly formed, respectively, and then they gradually decreased at every temperature. Irrespective of the kind of substrate, ring formation occurred, and cyclo-(glycyl-L-leucine) was one of the final products. The reaction rate constants related to degradation were estimated under the assumption that all the reactions obeyed first-order kinetics, and the simulated results corresponded well with the experimental ones in every case.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号