首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3839篇
  免费   310篇
  国内免费   1篇
  4150篇
  2022年   17篇
  2021年   37篇
  2020年   20篇
  2019年   29篇
  2018年   38篇
  2017年   44篇
  2016年   73篇
  2015年   83篇
  2014年   131篇
  2013年   177篇
  2012年   165篇
  2011年   214篇
  2010年   121篇
  2009年   105篇
  2008年   167篇
  2007年   183篇
  2006年   178篇
  2005年   150篇
  2004年   193篇
  2003年   159篇
  2002年   150篇
  2001年   151篇
  2000年   159篇
  1999年   122篇
  1998年   45篇
  1997年   48篇
  1996年   32篇
  1995年   47篇
  1994年   36篇
  1993年   31篇
  1992年   93篇
  1991年   83篇
  1990年   72篇
  1989年   84篇
  1988年   74篇
  1987年   85篇
  1986年   59篇
  1985年   70篇
  1984年   50篇
  1983年   30篇
  1982年   31篇
  1981年   27篇
  1979年   36篇
  1978年   20篇
  1977年   20篇
  1974年   22篇
  1973年   28篇
  1972年   15篇
  1971年   16篇
  1966年   17篇
排序方式: 共有4150条查询结果,搜索用时 11 毫秒
91.
Cyclothiazomycin B1 (CTB1) is an antifungal cyclic thiopeptide isolated from the culture broth of Streptomyces sp. HA 125-40. CTB1 inhibited the growth of several filamentous fungi including plant pathogens along with swelling of hyphae and spores. The antifungal activity of CTB1 was weakened by hyperosmotic conditions, and hyphae treated with CTB1 burst under hypoosmotic conditions, indicating increased cell wall fragility. CTB1-sensitive fungal species contain high levels of cell wall chitin and/or chitosan. Unlike nikkomycin Z, a competitive inhibitor of chitin synthase (CHS), CTB1 did not inhibit CHS activity. Although CTB1 inhibited CHS biosynthesis, the same result was also obtained with a non-specific proteins inhibitor, cycloheximide, which did not reduce cell wall rigidity. These results indicate that the primary target of CTB1 is not CHS, and we concluded that CTB1 antifungal activity was independent of this sole inhibition. We found that CTB1 bound to chitin but did not bind to β-glucan and chitosan. The results of the present study suggest that CTB1 induces cell wall fragility by binding to chitin, which forms the fungal cell wall. The antifungal activity of CTB1 could be explained by this chitin-binding ability.  相似文献   
92.
Previously, we clarified the surface antigen profiles of hepatic progenitor cells (HPCs) in fetal liver tissue as the CD49f(+)CD45(-)Thy1(-) cell fraction. However, these cells were a heterogeneous cell population containing various stages of differentiation. This study aimed to detect more immature HPCs, using a novel surface antigen, gp38. After the collagenase digestion of fetal livers harvested from E13.5 to E18.5 fetal mice, HPCs were obtained and divided into two subpopulations using flow cytometry: gp38-positive HPCs, and gp38-negative HPCs. Both types of HPCs were characterized by immunocytochemistry and RT-PCR. The proliferative activity was compared by BrdU incorporation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) assay. Furthermore, the comprehensive gene expression was investigated by DNA microarray. Both types of HPCs expressed alpha-fetoprotein. However, the gp38-positive HPCs derived from E13.5 fetal livers did not express albumin or cytokeratin 19, while the gp38-negative HPCs did. DNA microarray revealed that some genes related to the Wnt signal pathway were up-regulated in the gp38-positive HPCs. Furthermore, Wnt3a had a proliferative effect on the gp38-positive HPCs. In conclusion, the gp38-positive HPCs derived from fetal liver tissue until E13.5 could therefore be candidates for hepatic stem cells in the fetal liver.  相似文献   
93.
94.
Two mouse piwi-related genes: miwi and mili   总被引:14,自引:0,他引:14  
Genes belonging to the piwi family are required for stem cell self-renewal in diverse organisms. We cloned mouse homologues of piwi by RT-PCR using degenerative primers. The deduced amino acid sequences of mouse homologues MIWI and MILI showed that each contains a well-conserved C-terminal PIWI domain and that each shares significant homology with PIWI and their human counterparts HIWI. Both miwi and mili were found in germ cells of adult testis by in situ hybridization, suggesting that these genes may function in spermatogenesis. Furthermore, mili was expressed in primordial germ cells (PGCs) of developing mouse embryos and may therefore play a role during germ cell formation. MIWI may be involved in RNA processing or translational regulation, since MIWI was found to possess RNA binding activity. Our data suggest that miwi and mili regulate spermatogenesis and primordial germ cell production.  相似文献   
95.
The optic nerve contains the connective tissues, i.e. the lamina cribrosa and pial septa. This report presents a histological comparison of the lamina cribrosa and pial septa in the five classes (mammals, birds, reptiles, amphibians and teleosts) of vertebrates. Furthermore, the distribution of myelinated fibers was observed from the optic nerve through the retina in the same animals. The lamina cribrosa is found in mammals except for mice, and in birds. Structural complexity of the lamina was different in animals but generally dependent of the optic nerve thickness. The pial septa were present in the optic nerve proper of the mammals except for the mice, in birds and in a part of teleosts. Fasciculation of the optic nerve by the pial septa tended to be more prominent as the optic nerve become thicker. The optic nerve consisted of largely myelinated fibers in vertebrates. The retina contained some myelinated fibers in submammals but was thoroughly devoid of myelinated fibers in mammals. The borderline between myelinated and unmyelinated portions in the optic nerve of different species did not related to the lamina cribrosa. Amphibians had exceptionally only a few myelinated fibers in the optic nerve and no myelinated fibers in the retina.  相似文献   
96.
Adaptation to temperature fluctuation is essential for the survival of all living organisms. Although extensive research has been done on heat and cold shock responses, there have been no reports on global responses to cold shock below 10°C or near-freezing. We examined the genome-wide expression in Saccharomyces cerevisiae, following exposure to 4°C. Hierarchical cluster analysis showed that the gene expression profile following 4°C exposure from 6 to 48 h was different from that at continuous 4°C culture. Under 4°C exposure, the genes involved in trehalose and glycogen synthesis were induced, suggesting that biosynthesis and accumulation of those reserve carbohydrates might be necessary for cold tolerance and energy preservation. The observed increased expression of phospholipids, mannoproteins, and cold shock proteins (e.g., TIP1) is consistent with membrane maintenance and increased permeability of the cell wall at 4°C. The induction of heat shock proteins and glutathione at 4°C may be required for revitalization of enzyme activity, and for detoxification of active oxygen species, respectively. The genes with these functions may provide the ability of cold tolerance and adaptation to yeast cells.  相似文献   
97.
Starch synthase (SS) I and IIIa are the first and second largest components of total soluble SS activity, respectively, in developing japonica rice (Oryza sativa L.) endosperm. To elucidate the distinct and overlapping functions of these enzymes, double mutants were created by crossing the ss1 null mutant with the ss3a null mutant. In the F(2) generation, two opaque seed types were found to have either the ss1ss1/SS3ass3a or the SS1ss1/ss3ass3a genotype. Phenotypic analyses revealed lower SS activity in the endosperm of these lines than in those of the parent mutant lines since these seeds had different copies of SSI and SSIIIa genes in a heterozygous state. The endosperm of the two types of opaque seeds contained the unique starch with modified fine structure, round-shaped starch granules, high amylose content, and specific physicochemical properties. The seed weight was ~90% of that of the wild type. The amount of granule-bound starch synthase I (GBSSI) and the activity of ADP-glucose pyrophosphorylase (AGPase) were higher than in the wild type and parent mutant lines. The double-recessive homozygous mutant prepared from both ss1 and ss3a null mutants was considered sterile, while the mutant produced by the leaky ss1 mutant×ss3a null mutant cross was fertile. This present study strongly suggests that at least SSI or SSIIIa is required for starch biosynthesis in rice endosperm.  相似文献   
98.
To study how epithelial layers are formed during early development in Xenopus embryos, we have focused on Claudin, the major component of the tight junction. So far, 19 claudin genes have been found in the mouse, expressed in different epithelial tissues. However, though a number of cytological studies have been done for the roles of Claudins, their expression patterns and functions during early embryogenesis are largely unknown. We found three novel Xenopus claudin genes, which are referred to as claudin-4L1, -4L2, and -7L1. At the early gastrula stage, claudin-4L1, -4L2, and -7L1 mRNAs were detected in the ectoderm and in the mesoderm. At the late gastrula stage, claudin mRNAs were detected in the ectoderm through the involuting archenteron roof. At the neurula stage, claudin-4L1/4L2 and -7L1 mRNAs were differentially expressed in the neural groove and the epidermal ectoderm. At the tailbud stage, the claudin mRNAs were found in the branchial arches, the otic vesicles, the sensorial layer of the epidermis, and along the dorsal midline of the neural tube. In addition, claudin-4L1/4L2 mRNAs were detected in the pronephros and the endoderm, whereas claudin-7L1 mRNA was observed in the epithelial layer of the epidermis.  相似文献   
99.
100.
We cloned the promoter of the 9-cis-epoxycarotenoid dioxygenase gene from Arachis hypogaea L. β-Glucuronidase (GUS) histochemical staining and GUS activity assay indicated that the activity of the promoter was exhibited predominantly in the leaves and enhanced by water and NaCl stresses, and by application of abscisic acid (ABA) and salicylic acid (SA) in transgenic Arabidopsis. Moreover, two novel ABRE-like (abscisic acid response element) elements were identified in the promoter region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号