首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   837篇
  免费   51篇
  国内免费   1篇
  2023年   4篇
  2022年   16篇
  2021年   26篇
  2020年   18篇
  2019年   18篇
  2018年   28篇
  2017年   16篇
  2016年   30篇
  2015年   51篇
  2014年   56篇
  2013年   64篇
  2012年   84篇
  2011年   85篇
  2010年   52篇
  2009年   41篇
  2008年   61篇
  2007年   46篇
  2006年   35篇
  2005年   33篇
  2004年   38篇
  2003年   14篇
  2002年   29篇
  2001年   12篇
  2000年   13篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1988年   2篇
排序方式: 共有889条查询结果,搜索用时 15 毫秒
101.
This study examined the effects of high glucose on cell proliferation and its related signal pathways using mouse embryonic stem (ES) cells. Here, we showed that high glucose level significantly increased [3H]thymidine incorporation, BrdU incorporation, the number of cells, [3H]leucine, and [3H]proline incorporation in a time-( >3 hr) and dose-(> 25 mM) dependent manner. Moreover, high glucose level increased the cellular reactive oxygen species (ROS), Akt, and mitogen-activated protein kinases (MAPKs) phosphorylation. Subsequently, these signaling molecules involved in high glucose-induced increase of [3H]thymidine incorporation. High glucose level also increased cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4 protein levels, which is cell cycle regulatory proteins acting in G1-S phase of cell cycle. Inhibition of phosphatidylinositol 3-kinase (PI3-K) (LY 294002: PI3-kinase inhibitor, 10(-6) M), Akt (Akt inhibitor, 10(-5) M), and p44/42 MAPKs (PD 98059: MEK inhibitor, 10(-5) M) decreased these proteins. High glucose level phosphorylated the RB protein, which was decreased by inhibition of PI3-K and Akt. In conclusion, high glucose level stimulates mouse ES cell proliferation via the PI3-K/Akt and MAPKs pathways.  相似文献   
102.
103.
104.
Kim SW  Jeong EJ  Kang HS  Tak JI  Bang WY  Heo JB  Jeong JY  Yoon GM  Kang HY  Bahk JD 《Plasmid》2006,55(2):99-113
The plasmid pJB01 (GenBank Accession No. AY425961) isolated from the pathogenic bacterium, Enterococcus faecium JC1, is 2235 base pairs in length and consists of a putative double-strand origin (dso), a single-strand origin, a counter-transcribed RNA, and three open reading frames. A comparison of a few replication factors and motifs, bind and nic regions, for replication initiation on the nucleotide sequence level revealed that it belongs to the pMV158 family among RC-replicating plasmids. A runoff DNA synthesis assay demonstrated that nicking occurred between G525 and A526, which is located on the internal loop of a putative secondary structure in the dso. Unlike all the other plasmids of the pMV158 family having two or three direct repeats, pJB01 has three non-tandem direct repeats of 5'-CAACAAA-3' separated by four nucleotides, as the RepB-binding site in the dso. Moreover, the nick site on the internal loop is located at 77 nucleotides upstream from the RepB-binding region. Irrespective of the structural difference of direct repeats from other members of the pMV158 family, we think, it is still a new member of this plasmid family. The introduction of mutations in conserved regions of RepB confirmed that RepB N-moiety is important for nicking/nick-closing activity. Within N-moiety, especially all of the motif R-III, the Y100 in R-IV and Y116 in R-V residues, played particularly critical roles in this activity, however, for its binding, both of the N- and C-moieties of RepB were needed.  相似文献   
105.
EGF is a regulator of a wide variety of processes in various cell systems. Hepatocytes are important sites in the body's metabolism and function. Glucose transporter 2 (GLUT2) is a major transporter that is expressed strongly in hepatocytes. Therefore, this study examined the effect of EGF on GLUT2 and its related signal cascades in primary cultured chicken hepatocytes. EGF decreased [(3)H]deoxyglucose uptake in a dose- and time-dependent manner (>10 ng/ml, 2 h). AG-1478 (an EGF receptor antagonist) and genistein and herbimycin A (tyrosine kinase inhibitors) blocked the EGF-induced decrease in [(3)H]deoxyglucose uptake, which correlated with the GLUT2 expression level. In addition, the EGF-induced decrease in GLUT2 protein expression was inhibited by staurosporine, H-7, or bisindolylmaleimide I (PKC inhibitors), PD-98059 (a MEK inhibitor), SB-203580 (a p38 MAPK inhibitor), and SP-600125 (a JNK inhibitor), suggesting a role of both PKC and MAPKs (p44/42 MAPK, p38 MAPK, and JNK). In particular, EGF increased the translocation of PKC isoforms (PKC-alpha, -beta(1), -gamma, -delta, and -zeta) from the cytosol to the membrane fraction and increased the activation of p44/42 MAPK, p38 MAPK, and JNK. Moreover, PKC inhibitors blocked the EGF-induced phosphorylation of three MAPKs. In conclusion, EGF decreases the GLUT2 expression level via the PKC-MAPK signal cascade in chicken hepatocytes.  相似文献   
106.
Han J  Lee Y  Yeom KH  Nam JW  Heo I  Rhee JK  Sohn SY  Cho Y  Zhang BT  Kim VN 《Cell》2006,125(5):887-901
  相似文献   
107.
Heo J  Raines KW  Mocanu V  Campbell SL 《Biochemistry》2006,45(48):14481-14489
We have previously shown that redox agents including superoxide anion radical and nitrogen dioxide can react with GXXXXGK(S/T)C motif-containing GTPases (i.e., Rac1, Cdc42, and RhoA) to stimulate guanine nucleotide release. We now show that the reaction of RhoA with redox agents leads to different functional consequences from that of Rac1 and Cdc42 due to the presence of an additional cysteine (GXXXCGK(S/T)C) in the RhoA redox-active motif. While reaction of redox agents with RhoA stimulates guanine nucleotide dissociation, RhoA is subsequently inactivated through formation of an intramolecular disulfide that prevents guanine nucleotide binding thereby causing RhoA inactivation. Thus, redox agents may function to downregulate RhoA activity under conditions that stimulate Rac1 and Cdc42 activity. The opposing functions of these GTPases may be due in part to their differential redox regulation. In addition, the results presented herein suggest that the platinated-chemotherapeutic agent, cisplatin, which is known for targeting nucleic acids, reacts with RhoA to produce a RhoA thiol-cisplatin-thiol adduct, leading to inactivation of RhoA. Similarly, certain arsenic complexes (i.e., arsenate and arsenic trioxide) may inactivate RhoA by bridging the cysteine residues in the GXXXCGK(S/T)C motif. Thus, in addition to redox agents, platinated-chemotherapeutic agents and arsenic complexes may modulate the activity of GTPases containing the GXXXCGK(S/T)C motif (i.e., RhoA and RhoB).  相似文献   
108.
To search for candidate control agents against Aeromonas salmonicida subsp. salmonicida infections in aquaculture, one bacteriophage (phage), designated as PAS-1, was isolated from the sediment samples of the rainbow trout (Oncorhynchus mykiss) culture farm in Korea. The PAS-1 was morphologically classified as Myoviridae and possessed approximately 48 kb of double-strand genomic DNA. The phage showed broad host ranges to other subspecies of A. salmonicida as well as A. salmonicida subsp. salmonicida including antibiotic-resistant strains. Its latent period and burst size were estimated to be approximately 40 min and 116.7 PFU/cell, respectively. Furthermore, genomic and structural proteomic analysis of PAS-1 revealed that the phage was closely related to other Myoviridae phages infecting enterobacteria or Aeromonas species. The bacteriolytic activity of phage PAS-1 was evaluated using three subspecies of A. salmonicida strain at different doses of multiplicity of infection, and the results proved to be efficient for the reduction of bacterial growth. Based on these results, PAS-1 could be considered as a novel Aeromonas phage and might have potentiality to reduce the impacts of A. salmonicida infections in aquaculture.  相似文献   
109.
BackgroundExposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood.PurposeIn this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells.MethodThe human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process.ResultsHyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally, phosphorylation of ERK1/2, p38, and Akt were affected by CHI3L1 knockdown.ConclusionThis study indicates that CHI3L1 is involved in hyperoxia-induced cell death, suggesting that CHI3L1 may be one of several cell death regulators influencing the MAPK and PI3K pathways during oxidative stress in human airway epithelial cells.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号