首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2001篇
  免费   153篇
  国内免费   3篇
  2157篇
  2024年   2篇
  2023年   26篇
  2022年   28篇
  2021年   60篇
  2020年   30篇
  2019年   47篇
  2018年   66篇
  2017年   51篇
  2016年   81篇
  2015年   87篇
  2014年   112篇
  2013年   163篇
  2012年   175篇
  2011年   155篇
  2010年   102篇
  2009年   91篇
  2008年   125篇
  2007年   122篇
  2006年   105篇
  2005年   72篇
  2004年   69篇
  2003年   70篇
  2002年   64篇
  2001年   30篇
  2000年   31篇
  1999年   29篇
  1998年   14篇
  1997年   10篇
  1996年   8篇
  1995年   6篇
  1994年   4篇
  1993年   2篇
  1992年   15篇
  1991年   16篇
  1990年   11篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   11篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1979年   4篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
  1965年   1篇
  1962年   1篇
排序方式: 共有2157条查询结果,搜索用时 15 毫秒
871.
This paper is concerned with the potential use of a reciprocating plate bioreactor (RPB) for suspended plant cell cultures. The agitation mechanism of the RPB system, a plate stack, was first evaluated in pure water and in pseudocells medium of 20, 40 and 60% of PCV. As the pseudocell concentration increases, the oxygen mass transfer coefficient, KLa, significantly decreases. Correlations were established for each plate stack and concentration with good prediction of KLa. Three fermentations were performed with Vitis vinifera cells, two in the RPB system and one in shake flasks. Shake flask cultures showed better performance whereas the first fermentation performed with the RPB showed the lowest performance. The lower growth observed was attributed to the operating conditions for aeration and the dissolved oxygen control strategy. CO2 stripping in the initial portion of the fermentation led to lower biomass growth. The second fermentation, with more appropriate operating conditions, appears to follow the trend of shake flask cultures but was terminated after 5 days due to contamination. The RPB has the potential to be used for suspended plant cell cultures but significant research needs to be performed to find optimal operating conditions but, more importantly, to make appropriate modifications to ensure the sterility of the bioreactor over long time periods.  相似文献   
872.
Mangroves are common in estuaries along the Atlantic coast of Brazil. Although plant diversity is low, this ecosystem supports a range of animals, offering some resources for non-aquatic organisms. Many insects live in mangroves and, between them, many ant species that are exclusively arboreous. Mangroves throughout the world suffer from high levels of human impact, and this is particularly true for southeastern Bahia, where land-uses include traditional crab and fish exploitation, urban development, refuse pollution, recreation, and timber extraction. The ants of 13 mangrove sites, representing a range of levels of human use, have been studied along 250 km of the southern Bahia littoral, between Itacaré and Porto Seguro. Ants were sampled both inside and on the periphery of the tidal zone, using entomological rainbow, baiting, collect of hollow branches and pit-fall. A total of 108 species have been collected, with the richest genera being Camponotus and Pseudomyrmex, and the most frequent belonging to the genera Azteca and Crematogaster. The ant community living on the periphery of mangrove areas is rather homogeneous regardless of the degree of environmental perturbation, but varies markedly with the disturbance inside the mangroves themselves. The evolution of richness of the both communities, mangrove and periphery, is negatively related to the human effects, even limited to the periphery. Ant communities therefore have the potential to be useful as biological indicators of ecological impacts of land-use in these mangrove systems.  相似文献   
873.
Drought has a serious impact on agriculture worldwide. A plant's ability to adapt to rhizosphere drought stress requires reprogramming of root growth and development. Although physiological studies have documented the root adaption for tolerance to the drought stress, underlying molecular mechanisms is still incomplete, which is essential for crop engineering. Here, we identified OsNAC6‐mediated root structural adaptations, including increased root number and root diameter, which enhanced drought tolerance. Multiyear drought field tests demonstrated that the grain yield of OsNAC6 root‐specific overexpressing transgenic rice lines was less affected by drought stress than were nontransgenic controls. Genome‐wide analyses of loss‐ and gain‐of‐function mutants revealed that OsNAC6 up‐regulates the expression of direct target genes involved in membrane modification, nicotianamine (NA) biosynthesis, glutathione relocation, 3′‐phophoadenosine 5′‐phosphosulphate accumulation and glycosylation, which represent multiple drought tolerance pathways. Moreover, overexpression of NICOTIANAMINE SYNTHASE genes, direct targets of OsNAC6, promoted the accumulation of the metal chelator NA and, consequently, drought tolerance. Collectively, OsNAC6 orchestrates novel molecular drought tolerance mechanisms and has potential for the biotechnological development of high‐yielding crops under water‐limiting conditions.  相似文献   
874.
Temporal pigmentation changes resulting from the development of a purple color in anaerobic swine waste lagoons were investigated during a 4-year period. The major purple photosynthetic bacterium responsible for these color changes and the corresponding reductions in odor was isolated from nine photosynthetic lagoons. By using morphological, physiological, and phylogenetic characterization methods we identified the predominant photosynthetic bacterium as a new strain of Rhodobacter, designated Rhodobacter sp. strain PS9. Rhodobacter sp. strain PS9 is capable of photoorganotrophic growth on a variety of organic compounds, including all of the characteristic volatile organic compounds (VOC) responsible for the odor associated with swine production facilities (J. A. Zahn, A. A. DiSpirito, Y. S. Do, B. E. Brooks, E. E. Copper, and J. L. Hatfield, J. Environ. Qual. 30:624-634, 2001). The seasonal variations in airborne VOC emitted from waste lagoons showed that there was a 80 to 93% decrease in the concentration of VOC during a photosynthetic bloom. During the height of a bloom, the Rhodobacter sp. strain PS9 population accounted for 10% of the total community and up to 27% of the eubacterial community based on 16S ribosomal DNA signals. Additional observations based on seasonal variations in meteorological, biological, and chemical parameters suggested that the photosynthetic blooms of Rhodobacter sp. strain PS9 were correlated with lagoon water temperature and with the concentrations of sulfate and phosphate. In addition, the photosynthetic blooms of Rhodobacter sp. strain PS9 were inversely correlated with the concentrations of protein and fluoride.  相似文献   
875.
Nine compounds isolated from the leaf and stem of Vitis amurensis Rupr. (Vitaceae) were evaluated for their antimicrobial activity against two oral pathogens, Streptococcus mutans and Streptococcus sanguis, which are associated with caries and periodontal disease, respectively. The results of several antimicrobial tests, including MIC, MBC, and TBAI, showed that three compounds inhibited the growth of the test bacteria at concentrations ranging from 12.5 to 50 μg/mL. Among these compounds, compound 5, trans-ε-viniferin, displayed the strongest activity against S. mutans and S. sanguis with MIC values of 25 and 12.5 μg/mL, respectively. This is the first report on the antimicrobial activity of stilbenes and oligostilbenes isolated from the leaf and stem of V. amurensis. Thus, this result suggests that natural antimicrobial compounds derived from V. amurensis may benefit oral health as plaque-control agents for the prevention of dental caries and periodontal disease.  相似文献   
876.
In earlier studies we identified a putative repressor of the human beta-globin gene, termed beta protein 1 (BP1), which binds to two silencer DNA sequences upstream of the adult human beta-globin gene and to a negative control region upstream of the adult delta-globin gene. Further studies demonstrated an inverse correlation between the binding affinity of the BP1 protein for the distal beta-globin silencer sequence and the severity of sickle cell anemia, suggesting a possible role for BP1 in determining the production of hemoglobin S. We have now cloned a cDNA expressing the BP1 protein. Sequencing revealed that BP1 is a member of the homeobox gene family and belongs to the subfamily called Distal-less (DLX), genes important in early development. Further analysis showed that BP1 is an isoform of DLX4. BP1 protein has repressor function towards the beta-globin promoter, acting through the two beta-globin DNA silencers, demonstrated in transient transfection assays. Strong BP1 expression is restricted to placenta and kidney tissue, with no expression in 48 other human tissues. BP1 exhibits regulated expression in the human erythroid cell line MB-02, where its expression decreases upon induction of the beta-globin gene. BP1 is thus the first member of the DLX family with known DNA binding sites and a function in globin gene regulation.  相似文献   
877.
A (040)‐crystal facet engineered BiVO4 ((040)‐BVO) photoanode is investigated for solar fuel production. The (040)‐BVO photoanode is favorable for improved charge carrier mobility and high photocatalytic active sites for solar light energy conversion. This crystal facet design of the (040)‐BVO photoanode leads to an increase in the energy conversion efficiency for solar fuel production and an enhancement of the oxygen evolution rate. The photocurrent density of the (040)‐BVO photoanode is determined to be 0.94 mA cm?2 under AM 1.5 G illumination and produces 42.1% of the absorbed photon‐to‐current conversion efficiency at 1.23 V (vs RHE, reversible hydrogen electrode). The enhanced charge separation efficiency and improved charge injection efficiency driven by (040) facet can produce hydrogen with 0.02 mmol h?1 at 1.23 V. The correlation between the (040)‐BVO photoanode and the solar fuel production is investigated. The results provide a promising approach for the development of solar fuel production using a BiVO4 photoanode.  相似文献   
878.
Batten disease (BD) is the most common form of a group of disorders called neuronal ceroid lipofuscinosis, which are caused by a CLN3 gene mutation. A variety of pathogenic lysosomal storage disorder mechanisms have been suggested such as oxidative stress, endoplasmic reticulum (ER) stress, and altered protein trafficking. Resveratrol, a stilbenoid found in red grape skin, is a potent antioxidant chemical. Recent studies have suggested that resveratrol may have a curative effect in many neurodegenerative diseases. Therefore, we investigated the activities of resveratrol at the levels of oxidative and ER stress and apoptosis factors using normal and BD lymphoblast cells. We report that the BD lymphoblast cells contained low-levels of superoxide dismutase-1 (SOD-1) due to the long-term stress of reactive oxygen species. However, when we treated the cells with resveratrol, SOD-1 increased to levels observed in normal cells. Furthermore, we investigated the expression of glucose-regulated protein 78 as an ER stress marker. BD cells underwent ER stress, but resveratrol treatment resolved the ER stress in a dose-dependent manner. We further demonstrated that the levels of apoptosis markers such as apoptosis induce factor, cytochrome c, and cleavage of poly (ADP)-ribose polymerase decreased following resveratrol treatment. Thus, we propose that resveratrol may have beneficial effects in patients with BD.  相似文献   
879.
Stretchable piezoelectric nanogenerators (SPENGs) for human kinematics energy harvesting have limited use due to the low stretchability or mechanical robustness and the difficulty of structural design for omnidirectional stretchability. This study reports an efficient, omnidirectionally stretchable, and robust SPENG based on a stretchable graphite electrode on a 3D micropatterned stretchable substrate and a stacked mat of piezoelectric nanofibers. The stacked mat of free‐standing nanofibers is alternatively composed of nanocomposite nanofibers of barium titanate nanoparticles embedded in polyurethane and poly(vinylidene fluoride‐trifluoroethylene) nanofibers. The nanofiber SPENG (nf‐SPENG) exhibits a high stretchability of 40% and high mechanical durability up to 9000 stretching cycles at 30% strain, which are attributed to the stress‐relieving nature of the 3D micropattern on the substrate and the free‐standing stacked hybrid nanofibers. The nf‐SPENG produces a peak open circuit voltage (Voc) and short circuit current (Isc) of 9.3 V and 189 nA, respectively. The nf‐SPENG is demonstrated to harvest the energy from human kinematics while walking when placed over the knee cap of a subject, generating a maximum Voc of 10.1 V. The omnidirectional stretchability, efficiency, facile fabrication process, mechanical durability, environmentally friendly lead‐free components, and response to multimodal straining make this device suitable for self‐powered wearable sensing systems.  相似文献   
880.
The method Presented earlier by Hossain and Do determine the active enzyme distribution and relevant rate parameters under the condition of strong diffusional resistance is extended in this article to cover the cases of comparable diffusion and reaction rates (3 < phi < 20). The theory proposed herein is tested wtih the experimental data of hydrogen perioxide-catalase immobilized on controlled-pore glass (CPG) particles of small size (150 mum). (c) 1992 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号