首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2085篇
  免费   115篇
  国内免费   1篇
  2201篇
  2022年   13篇
  2021年   29篇
  2020年   17篇
  2019年   10篇
  2018年   30篇
  2017年   33篇
  2016年   39篇
  2015年   66篇
  2014年   76篇
  2013年   102篇
  2012年   122篇
  2011年   134篇
  2010年   77篇
  2009年   88篇
  2008年   117篇
  2007年   143篇
  2006年   134篇
  2005年   130篇
  2004年   124篇
  2003年   130篇
  2002年   111篇
  2001年   28篇
  2000年   38篇
  1999年   30篇
  1998年   37篇
  1997年   37篇
  1996年   19篇
  1995年   22篇
  1994年   15篇
  1993年   16篇
  1992年   26篇
  1991年   22篇
  1990年   17篇
  1989年   17篇
  1988年   14篇
  1987年   15篇
  1986年   24篇
  1985年   17篇
  1984年   8篇
  1983年   13篇
  1982年   12篇
  1981年   5篇
  1980年   8篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1969年   2篇
排序方式: 共有2201条查询结果,搜索用时 0 毫秒
191.
Pombe Cdc15 homology (PCH) proteins play an important role in a variety of actin-based processes, including clathrin-mediated endocytosis (CME). The defining feature of the PCH proteins is an evolutionarily conserved EFC/F-BAR domain for membrane association and tubulation. In the present study, we solved the crystal structures of the EFC domains of human FBP17 and CIP4. The structures revealed a gently curved helical-bundle dimer of approximately 220 A in length, which forms filaments through end-to-end interactions in the crystals. The curved EFC dimer fits a tubular membrane with an approximately 600 A diameter. We subsequently proposed a model in which the curved EFC filament drives tubulation. In fact, striation of tubular membranes was observed by phase-contrast cryo-transmission electron microscopy, and mutations that impaired filament formation also impaired membrane tubulation and cell membrane invagination. Furthermore, FBP17 is recruited to clathrin-coated pits in the late stage of CME, indicating its physiological role.  相似文献   
192.
Genes encoding 2-deoxy-d-ribose-5-phosphate aldolase (DERA) homologues from two hyperthermophiles, the archaeon Pyrobaculum aerophilum and the bacterium Thermotoga maritima, were expressed individually in Escherichia coli, after which the structures and activities of the enzymes produced were characterized and compared with those of E. coli DERA. To our surprise, the two hyperthermophilic DERAs showed much greater catalysis of sequential aldol condensation using three acetaldehydes as substrates than the E. coli enzyme, even at a low temperature (25 degrees C), although both enzymes showed much less 2-deoxy-d-ribose-5-phosphate synthetic activity. Both the enzymes were highly resistant to high concentrations of acetaldehyde and retained about 50% of their initial activities after a 20-h exposure to 300 mM acetaldehyde at 25 degrees C, whereas the E. coli DERA was almost completely inactivated after a 2-h exposure under the same conditions. The structure of the P. aerophilum DERA was determined by X-ray crystallography to a resolution of 2.0 A. The main chain coordinate of the P. aerophilum enzyme monomer was quite similar to those of the T. maritima and E. coli enzymes, whose crystal structures have already been solved. However, the quaternary structure of the hyperthermophilic enzymes was totally different from that of the E. coli DERA. The areas of the subunit-subunit interface in the dimer of the hyperthermophilic enzymes are much larger than that of the E. coli enzyme. This promotes the formation of the unique dimeric structure and strengthens the hydrophobic intersubunit interactions. These structural features are considered responsible for the extremely high stability of the hyperthermophilic DERAs.  相似文献   
193.
194.
195.
The presence of post-translational regulation of MHC class II (MHC II) under physiological conditions has been demonstrated recently in dendritic cells (DCs) that potently function as antigen-presenting cells (APCs). Here, we report that MARCH-I, an E3 ubiquitin ligase, plays a pivotal role in the post-translational regulation of MHC II in B cells. MARCH-I expression was particularly high in B cells, and the forced expression of MARCH-I induced the ubiquitination of MHC II. In B cells from MARCH-I-deficient mice (MARCH-I KO), the half-life of surface MHC II was prolonged and the ubiquitinated form of MHC II completely disappeared. In addition, MARCH-I-deficient B cells highly expressed exogenous antigen-loaded MHC II on their surface and showed high ability to present exogenous antigens. These results suggest that the function of MHC II in B cells is regulated through ubiquitination by MARCH-I.  相似文献   
196.
197.
Crystal structure of Ufc1, the Ufm1-conjugating enzyme   总被引:2,自引:0,他引:2  
Ubiquitin and ubiquitin-like protein-conjugating enzymes play central roles in posttranslational modification processes. The ubiquitin-fold modifier 1 (Ufm1), one of a variety of ubiquitin-like modifiers, is covalently attached to target proteins via Uba5 and Ufm1-conjugating enzyme 1 (Ufc1), which are analogous to the E1 and E2 ubiquitylation enzymes. As Ufm1-related proteins are conserved in metazoa and plants, the Ufm1 system likely plays important roles in various multicellular organisms. Herein, we report the X-ray structure of human Ufc1 determined at 1.6 A resolution. The Ufc1 structure comprises a canonical E2 domain and an additional N-terminal domain. The Uba5 binding site on Ufc1 was assigned by structural comparison of Ufc1 and Ubc12 and related mutational analyses. In addition, we show that the N-terminal unique domain of Ufc1 contributes to thermal stability.  相似文献   
198.
The cysteine-free pyrrolidone carboxyl peptidase (PCP-0SH) from a hyperthermophile, Pyrococcus furiosus, can be trapped in the denatured state under nondenaturing conditions, corresponding to the denatured structure that exists in equilibrium with the native state under physiological conditions. The denatured state is the initial state (D1 state) in the refolding process but differs from the completely denatured state (D2 state) in the concentrated denaturant. Also, it has been found that the D1 state corresponds to the heat-denatured state. To elucidate the structural basis of the D1 state, H/D exchange experiments with PCP-0SH were performed at pD 3.4 and 4 degrees C. The results indicated that amide protons in the C-terminal alpha6-helix region hardly exchanged in the D1 state with deuterium even after 7 days, suggesting that the alpha6-helix (from Ser188 to Glu205) of PCP-0SH was stably formed in the D1 state. In order to examine the role of the alpha6-helix in folding and stability, H/D exchange experiments with a mutant, A199P, at position 199 in the alpha6-helix region were performed. The alpha6-helix region of A199P in the D1 state was partially unprotected, while some hydrophobic residues were protected against the H/D exchange, although these hydrophobic residues were unprotected in the wild-type protein. These results suggest that the structure of A199P in the D1 state formed a temporary stable denatured structure with a non-native hydrophobic cluster and the unstructured alpha6-helix. Both the stability and the refolding rate decreased by the substitution of Pro for Ala199. We can conclude that the native-like helix (alpha6-helix) of PCP-0SH is already constructed in the D1 state and is necessary for efficient refolding into the native structure and stabilization of PCP-0SH.  相似文献   
199.
Javed R  Yarimizu K  Pelletier N  Li C  Knowles AF 《Biochemistry》2007,46(22):6617-6627
The human ecto-ATPase (NTPDase 2) contains conserved motifs including five apyrase conserved regions (ACRs) and four conserved regions (CRs) as well as conserved lysine and arginine residues that are also present in other cell surface E-NTPDases. Some of the positively charged amino acids may be involved in ATP binding. The protein also contains six potential N-linked glycosylation sites. Results obtained with seven lysine and six arginine mutants indicate the importance of K62 that is located in CR1, K182, which is downstream of ACR3, and R155, which immediately follows CR3. Mutation of asparagine at the six potential N-linked glycosylation sites individually to glutamine established the importance of N64 in CR1 and N443 in ACR5 in protein function and expression. Mutation of N64, which is conserved in all cell surface NTPDases, results in the expression of an unstable protein, the activity of which is only manifested in the presence of concanavalin A. Both K62 and N64 reside in CR1 that is conserved in all cell surface NTPDases. In the sequence of the CR1 of human ecto-ATPase, 58WPADKENDTGIV69, 65DTG67 is similar to the phosphate-binding motif (DXG) in ACR1 and 4. The D65A and G67A mutants have reduced protein expression and activity. Mutations of other residues in CR1 to alanine led to partial to complete loss of protein expression and activity except for P59. The alanine mutants of the three acidic amino acid residues, D61, E63, and D65, all have decreased affinity for divalent ions. D61 can be substituted by glutamate, but E63 appears to be invariable. Taken together, these results indicate that CR1, which follows ACR1 in the cell surface NTPDases, is an essential structural element in these enzymes.  相似文献   
200.
Mammalian annexins are implicated in several physiological mechanisms based on their calcium-dependent phospholipid/membrane binding and carbohydrate-binding activities. In this study, we investigated gene expression profiles of all four Caenorhabditis elegans annexins, nex-1, -2, -3 and -4, throughout the development, and compared phospholipid- and carbohydrate-binding properties of their protein products, NEX-1, -2, -3 and -4. We found that nex-1 and -3 are transcribed continuously during the developmental stages, while expression of nex-2 and -4 appeared to be temporal, peaking at the L1 stage followed by a gradual decrease toward the adult stage. NEX-1 and -3 were detected as single protein band in total worm extracts by immunoblotting, but NEX-2 was heterogenic in size. NEX-1, -2, and -3 showed the binding activities to phosphatidylserine, phosphatidylinositol and phosphatidylethanolamine, but not to phosphatidylcholine. In contrast to their uniform phospholipids-binding properties, their glycosaminoglycan-binding activities were distinctive. NEX-2 bound to heparan sulfate and chondroitin, NEX-3 bound only to heparan sulfate, and NEX-1 showed no lectin activities under tested conditions. NEX-4 had neither phospholipids- nor carbohydrate-binding properties. Differentiated expression profiles and ligand-binding properties of NEX-1, -2, -3 and -4, shown in our study, may represent distinctive roles for each C. elegans annexins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号