首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1960篇
  免费   109篇
  国内免费   1篇
  2023年   5篇
  2022年   10篇
  2021年   27篇
  2020年   15篇
  2019年   9篇
  2018年   27篇
  2017年   34篇
  2016年   38篇
  2015年   60篇
  2014年   84篇
  2013年   83篇
  2012年   118篇
  2011年   133篇
  2010年   79篇
  2009年   83篇
  2008年   110篇
  2007年   144篇
  2006年   120篇
  2005年   115篇
  2004年   110篇
  2003年   120篇
  2002年   108篇
  2001年   30篇
  2000年   26篇
  1999年   33篇
  1998年   35篇
  1997年   27篇
  1996年   12篇
  1995年   27篇
  1994年   17篇
  1993年   11篇
  1992年   18篇
  1991年   18篇
  1990年   11篇
  1989年   10篇
  1988年   21篇
  1987年   14篇
  1986年   10篇
  1985年   18篇
  1984年   7篇
  1983年   11篇
  1982年   11篇
  1981年   10篇
  1980年   6篇
  1979年   6篇
  1978年   7篇
  1977年   8篇
  1974年   5篇
  1970年   8篇
  1967年   5篇
排序方式: 共有2070条查询结果,搜索用时 218 毫秒
51.
Rice seed has been used as a production platform for high value recombinant proteins. When mature human interleukin 7 (hIL-7) was expressed as a secretory protein in rice endosperm by ligating the N terminal glutelin signal peptide and the C terminal KDEL endoplasmic reticulum (ER) retention signal to the hIL-7 cytokine to improve production yield, this protein accumulated at levels visible by Coomassie Brilliant Blue staining. However, the production of this protein led not only to a severe reduction of endogenous seed storage proteins but also to a deterioration in grain quality. The appearance of aberrant grain phenotypes (such as floury and shrunken) was attributed to ER stress induced by the retention of highly aggregated unfolded hIL-7 in the ER lumen, and the expression levels of chaperones such as BiPs and PDIs were enhanced in parallel with the increase in hIL-7 levels. The activation of this ER stress response was shown to be mainly mediated by the OsIRE1-OsbZIP50 signal cascade, based on the appearance of unconventional splicing of OsbZIP50 mRNA and the induction of OsBiP4&5. Interestingly, the ER stress response could be induced by lower concentrations of hIL-7 versus other types of cytokines such as IL-1b, IL-4, IL-10, and IL-18. Furthermore, several ubiquitin 26S proteasome-related genes implicated in ER-associated degradation were upregulated by hIL-7 production. These results suggest that severe detrimental effects on grain properties were caused by proteo-toxicity induced by unfolded hIL-7 aggregates in the ER, resulting in the triggering of ER stress.  相似文献   
52.
This study focuses on clarifying the contribution of sulfation to radiation-induced apoptosis in human Burkitt’s lymphoma cell lines, using 3′-phosphoadenosine 5′-phosphosulfate transporters (PAPSTs). Overexpression of PAPST1 or PAPST2 reduced radiation-induced apoptosis in Namalwa cells, whereas the repression of PAPST1 expression enhanced apoptosis. Inhibition of PAPST slightly decreased keratan sulfate (KS) expression, so that depletion of KS significantly increased radiation-induced apoptosis. In addition, the repression of all three N-acetylglucosamine-6-O-sulfotransferases (CHST2, CHST6, and CHST7) increased apoptosis. In contrast, PAPST1 expression promoted the phosphorylation of p38 MAPK and Akt in irradiated Namalwa cells. These findings suggest that 6-O-sulfation of GlcNAc residues in KS reduces radiation-induced apoptosis of human Burkitt’s lymphoma cells.  相似文献   
53.
The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope). Knockdown of 3OST-5 reduced Fas signaling and the potential for the transition to mEpiSCLCs. This indicates that the HS4C3-binding epitope is necessary for the transition to the primed state. We propose that Fas signaling through the HS4C3-binding epitope contributes to the transition from the naïve state to the primed state.  相似文献   
54.
An obligate chemolithoautotroph, Thiobacillus ferrooxidans API 9–3, could utilize amino acids, other than glycine, methionine and phenylalanine, as a sole source of nitrogen. However, both the growth rate and growth yield were lower than those in Fe2+-NH4 -salts medium, suggesting that the ammonium ion was a superior nitrogen source for the strain compared to amino acids. Methionine and phenylalanine strongly inhibited the cell growth on Fe2+-NH4-salts medium at 10 mm. [14C]Glycine could not be taken up into the cells, and this meant the strain could not use glycine as a sole source of nitrogen. The uptake of [14C]leucine into the cells was dependent on the presence of Fe2 +. When the strain was cultured on Fe2 + - leucine (lOmm)-salts medium lacking an inorganic nitrogen source for 5 days at 30°C, 83.5% and 16.5% of the cellular carbon were derived from carbon dioxide and leucine, respectively, indicating that carbon dioxide was a superior carbon source for the bacterium compared to leucine. The ammonium ion did not inhibit the utilization of leucine for cellular carbon. Leucine uptake was markedly inhibited by inhibitors of protein synthesis, such as chloramphenicol (94.3% at 1 mm), streptomycin (57.2% at 5mm) and rifampin (77.2% at 0.1 mm), respectively. Carbon dioxide uptake was also completely inhibited by chloramphenicol at 4mm. These results suggest that the transport of both amino acids and carbon dioxide into the cells was dependent on protein synthesis.  相似文献   
55.
The presence of α-ketoglutarate (α-KG) dehydrogenase complex in the glutamate-producing bacteria was demonstrated for the first time with Brevibacterium flavum. The partially purified enzyme, which was specific to KG and NAD+ with the usual requirements for other co-factors, was labile and stabilized by glycerol, Mg2+, and thiamine pyrophosphate. The enzyme showed an optimum pH of 7.6 and Kms of 80, 86, and 61 μm for KG, NAD+, and CoA, respectively, cis-Aconitate, succinyl-CoA, NADPH, NADH, pyruvate, and oxalacetate strongly inhibited the activity, while it was activated by acetyl-CoA, but not by AMP. Various inorganic and organic salts also inhibited the activity. When cells were cultured in glucose and acetate media, the specific activity of the cell extracts increased markedly and reached to a maximum at the late-logarithmic phase. Then, it decreased to the basal level. The addition of glutamate stimulated the synthesis of the enzyme.  相似文献   
56.
The enantioselective hydrolysis of (R,S)-3-acetoxymethyl-7,8-difluoro-2,3-dihydro-4H-[1,4]benzoxazine (I) with enzymes was investigated. Optically active I and its hydrolyzate, 7,8-difluoro-2,3-dihydro-3-hydroxymethyl-4H-[1,4]benzoxazine (II), are the intermediates for preparing optically active ofloxacins, whose racemate is known to be an excellent antibacterial agent. Lipoprotein lipase from Pseudomonas fluorescens (LPL Amano 3) was found to predominantly hydrolyze (S)-I, giving (R)-I in 54% e.e. and (R)-II in 44% e.e. On the other hand, lipase from Candida cylindracea was found to predominantly hydrolyze (R)-I, giving (S)-I in 24% e.e. and (S)-II in 20% e.e. Since, the optical purities of I and II thus obtained were not particularly high, these optically active I and II were converted into 3-acetoxymethyl-7,8-difluoro-2,3-dihydro-4-(3,5-dinitrobenzoyl)-4H-[1,4]benzoxazine (IV). After recrystallizing IV from ethyl acetate-hexane, (S)- and (R)-II were obtained with high enantiomeric excess by removing the crystallized racemic IV and subsequently hydrolyzing the resulting optically active IV with alkali. The reduction of II afforded 7,8-difluoro-2,3-dihydro-3-methyl-4H-[1,4]benzoxazine (III), for which the optical purity was estimated to be >96%e.e. by HPLC analysis. (R)- and (S)-ofloxacin were prepared from (R)- and (S)-III with retention of their configuration.  相似文献   
57.
58.
Relation between sulfhydryl groups in soybean proteins and the physical properties of tofu was studied. Changes in the amount of sulfhydryl groups by heating or treatment with urea were more rapid in 11S protein as compared with 7S protein. Moreover, by changing the amount of sulfhydryl groups in proteins by N-ethylmaleimide, 2-mercapto-ethanol and dithiothreitol, the physical properties of tofu from 11S protein were more significantly effected than that from 7S protein. Namely, tofu-gel from 11S. protein got harder and stronger as the amount of sulfhydryl groups increased.

The results may suggest that tofu prepared from IIS protein has more disulfide bonds in its gel than that from 7S protein.  相似文献   
59.
Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific.  相似文献   
60.
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号