首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2588篇
  免费   151篇
  国内免费   2篇
  2741篇
  2022年   20篇
  2021年   38篇
  2020年   21篇
  2019年   12篇
  2018年   37篇
  2017年   41篇
  2016年   52篇
  2015年   94篇
  2014年   113篇
  2013年   136篇
  2012年   174篇
  2011年   173篇
  2010年   100篇
  2009年   116篇
  2008年   151篇
  2007年   162篇
  2006年   165篇
  2005年   141篇
  2004年   130篇
  2003年   150篇
  2002年   127篇
  2001年   51篇
  2000年   59篇
  1999年   51篇
  1998年   36篇
  1997年   29篇
  1996年   22篇
  1995年   22篇
  1994年   18篇
  1993年   17篇
  1992年   27篇
  1991年   35篇
  1990年   21篇
  1989年   20篇
  1988年   13篇
  1987年   15篇
  1986年   18篇
  1985年   20篇
  1984年   5篇
  1983年   14篇
  1982年   12篇
  1981年   5篇
  1980年   8篇
  1979年   10篇
  1978年   8篇
  1977年   7篇
  1976年   6篇
  1974年   6篇
  1973年   6篇
  1970年   9篇
排序方式: 共有2741条查询结果,搜索用时 15 毫秒
991.
TAK1 kinase is an indispensable intermediate in several cytokine signaling pathways including tumor necrosis factor, interleukin-1, and transforming growth factor-beta signaling pathways. TAK1 also participates in stress-activated intracellular signaling pathways such as osmotic stress signaling pathway. TAK1-binding protein 1 (TAB1) is constitutively associated with TAK1 through its C-terminal region. Although TAB1 is known to augment TAK1 catalytic activity when it is overexpressed, the role of TAB1 under physiological conditions has not yet been identified. In this study, we determined the role of TAB1 in TAK1 signaling by analyzing TAB1-deficient mouse embryonic fibroblasts (MEFs). Tumor necrosis factor- and interleukin-1-induced activation of TAK1 was entirely normal in Tab1-deficient MEFs and could activate both mitogen-activated protein kinases and NF-kappaB. In contrast, we found that osmotic stress-induced activation of TAK1 was largely impaired in Tab1-deficient MEFs. Furthermore, we showed that the C-terminal 68 amino acids of TAB1 were sufficient to mediate osmotic stress-induced TAK1 activation. Finally, we attempted to determine the mechanism by which TAB1 activates TAK1. We found that TAK1 is spontaneously activated when the concentration is increased and that it is totally dependent on TAB1. Cell shrinkage under the osmotic stress condition increases the concentration of TAB1-TAK1 and may oligomerize and activate TAK1 in a TAB1-dependent manner. These results demonstrate that TAB1 mediates TAK1 activation only in a subset of TAK1 pathways that are mediated through spontaneous oligomerization of TAB1-TAK1.  相似文献   
992.
The major heat shock protein, HSP70, is known to be involved in cytoprotection against environmental stresses mediated by their function as a "molecular chaperone". Monochloramine (NH(2)Cl) is a potent cytotoxic oxidant generated by neutrophil-derived hypochlorous acid and Helicobacter pylori urease-induced ammonia. In this study, to evaluate the cytoprotective effect of HSP70 against NH(2)Cl-induced gastric mucosal cell injury, rat gastric mucosal cells (RGM-1) were stably transfected with pBK-CMV containing the human HSP70 gene (7018-RGM-1) or pBK-CMV alone (pBK-CMV-12) as control cells. These cells were treated with various concentrations of NH(2)Cl. Cell Viability was determined by MTT assay and the direct plasma membrane damage was analyzed by lactate dehydrogenase (LDH) release assay. Apoptosis was determined by DNA fragmentation analysis. NH(2)Cl caused injury to pBK-CMV-12 cells in a concentration-dependent manner. NH(2)Cl-induced gastric cell injury was significantly diminished in HSP70 over-expressing cell line (7018-RGM-1) both necrosis and apoptosis compared to the control cell line (pBK-CMV-12) transfected with CMV vector alone. These result suggest that overexpression of HSP70 plays an important role in protecting gastric cells against NH(2)Cl-induced injury.  相似文献   
993.
994.
Autophagy is an evolutionarily conserved pathway in which the cytoplasm and organelles are engulfed within double-membrane vesicles, termed autophagosomes, for the turnover and recycling of these cellular constituents. The yeast Atg8 and its human orthologs, such as LC3 and GABARAP, have a unique feature as they conjugate covalently to phospholipids, differing from ubiquitin and other ubiquitin-like modifiers that attach only to protein substrates. The lipidated Atg8 and LC3 localize to autophagosomal membranes and play indispensable roles for maturation of autophagosomes. Upon completion of autophagosome formation, some populations of lipidated Atg8 and LC3 are delipidated for recycling. Atg4b, a specific protease for LC3 and GABARAP, catalyzes the processing reaction of LC3 and GABARAP precursors to mature forms and de-conjugating reaction of the modifiers from phospholipids. Atg4b is a unique enzyme whose primary structure differs from that of any other proteases that function as processing and/or de-conjugating enzymes of ubiquitin and ubiquitin-like modifiers. However, the tertiary structures of the substrates considerably resemble that of ubiquitin except for the N-terminal additional domain. Here we determined the crystal structure of human Atg4b by X-ray crystallography at 2.0 A resolution, and show that Atg4b is a cysteine protease whose active catalytic triad site consists of Cys74, His280 and Asp278. The structure is comprised of a left lobe and a small right lobe, designated the "protease domain" and the "auxiliary domain", respectively. Whereas the protease domain structure of Atg4b matches that of papain superfamily cysteine proteinases, the auxiliary domain contains a unique structure with yet-unknown function. We propose that the R229 and W142 residues in Atg4b are specifically essential for recognition of substrates and catalysis of both precursor processing and de-conjugation of phospholipids.  相似文献   
995.
Chemically synthesized 4-hydroxybenzoate (4HBA) is widely used in the chemical and electrical industries as a material for producing polymers such as those of the liquid crystal type. Its alkyl esters, called parabens, have been the most widely used preservatives by the food and cosmetic industries. We report here for the first time a microorganism, a marine bacterium, which biosynthesizes these petrochemical products. The marine bacterial strain, A4B-17, which was found to belong to the genus Microbulbifer on the basis of its rRNA and gyrB sequences, was isolated from an ascidian in the coastal waters of Palau. Strain A4B-17 was, surprisingly, found to produce 10 mg/liter of 4HBA, together with its butyl (24 mg/liter), heptyl (0.4 mg/liter), and nonyl (6 mg/liter) esters. We therefore characterized 23 other marine bacteria belonging to the genus Microbulbifer, which our institute had previously isolated from various marine environments, and found that these bacteria also produced 4HBA, although with low production levels (less than one-fifth of that produced by A4B-17). We also show that the alkyl esters of 4HBA produced by strain A4B-17 were effective in preventing the growth of yeasts, molds, and gram-positive bacteria.  相似文献   
996.
997.
To improve the in vitro potency of the c-Src inhibitor 1a and to address its hERG liability, a structure-activity study was carried out, focusing on two regions of the lead compound. The blockade of the delayed cardiac current rectifier K(+) (I(Kr)) channel was overcome by replacing the ethylenediamino group with an amino alcohol group at the 7-position. In addition, modifying the substituents at the 5-position and the side chain groups on the amino alcohols at the 7-position enhanced the intracellular c-Src inhibitory activity and increased central nervous system (CNS) penetration. In the present study, 6l exhibited significant in vivo efficacy in a middle cerebral artery (MCA) occlusion model in rats.  相似文献   
998.
We developed new amino linker reagents for an oligonucleotide (ONT) terminus. These reagents consist of an aminoethyl carbamate main linkage and a side-chain residue, which was a naphthylmethoxymethyl, methoxymethyl, or methyl group or a hydrogen atom. The primary amine was protected with a monomethoxytrityl (MMT) group. The chemical properties of ONTs containing these amino-modifications were investigated. The MMT group of these amino-modifications could be quite rapidly removed from the amine under very mild acidic conditions, which are not strong enough for the deprotection of a conventional aliphatic amine. This significant feature enabled the amino-modified ONTs to be conveniently purified with a reverse phase column. Furthermore, the amino-modifications efficiently reacted to active esters, as compared with other amino-modifications. We also found that the pK(a) values of the amino-modifications were lower than that of the aliphatic amine. All of the experimental results showed that these chemical properties are closely related to their structures. We report here the chemical properties and the availability of the new amino linker reagents.  相似文献   
999.
Rab27A is required for actin-based melanosome transport in mammalian skin melanocytes through its interaction with a specific effector, Slac2-a/melanophilin. Mutations that disrupt the Rab27A/Slac2-a interaction cause human Griscelli syndrome. The other Rab27 isoform, Rab27B, also binds all of the known effectors of Rab27A. In this study, we determined the crystal structure of the constitutively active form of Rab27B complexed with GTP and the effector domain of Slac2-a. The Rab27B/Slac2-a complex exhibits several intermolecular hydrogen bonds that were not observed in the previously reported Rab3A/rabphilin complex. A Rab27A mutation that disrupts one of the specific hydrogen bonds with Slac2-a resulted in the dramatic reduction of Slac2-a binding activity. Furthermore, we generated a Rab3A mutant that acquires Slac2-a binding ability by transplanting four Rab27-specific residues into Rab3A. These findings provide the structural basis for the exclusive association of Slac2-a with the Rab27 subfamily, whereas rabphilin binds several subfamilies, including Rab3 and Rab27.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号