首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1974篇
  免费   81篇
  国内免费   1篇
  2022年   11篇
  2021年   23篇
  2020年   10篇
  2019年   6篇
  2018年   26篇
  2017年   24篇
  2016年   36篇
  2015年   56篇
  2014年   70篇
  2013年   78篇
  2012年   110篇
  2011年   115篇
  2010年   75篇
  2009年   87篇
  2008年   102篇
  2007年   136篇
  2006年   121篇
  2005年   116篇
  2004年   98篇
  2003年   107篇
  2002年   109篇
  2001年   25篇
  2000年   33篇
  1999年   32篇
  1998年   31篇
  1997年   24篇
  1996年   14篇
  1995年   23篇
  1994年   15篇
  1993年   15篇
  1992年   26篇
  1991年   23篇
  1990年   31篇
  1989年   21篇
  1988年   31篇
  1987年   28篇
  1986年   18篇
  1985年   32篇
  1984年   19篇
  1983年   7篇
  1982年   9篇
  1981年   8篇
  1980年   6篇
  1979年   5篇
  1978年   9篇
  1977年   6篇
  1976年   5篇
  1974年   9篇
  1971年   7篇
  1968年   5篇
排序方式: 共有2056条查询结果,搜索用时 31 毫秒
991.
Phosphatidylserine (PS) has many important biological roles, but little is known about its role in plants, partly because of its low abundance. We show here that PS is enriched in Arabidopsis floral tissues and that genetic disruption of PS biosynthesis decreased heterozygote fertility due to inhibition of pollen maturation. At1g15110, designated PSS1, encodes a base-exchange-type PS synthase. Escherichia coli cells expressing PSS1 accumulated PS in the presence of l-serine at 23°C. Promoter-GUS assays showed PSS1 expression in developing anther pollen and tapetum. A few seeds with pss1-1 and pss1-2 knockout alleles escaped embryonic lethality but developed into sterile dwarf mutant plants. These plants contained no PS, verifying that PSS1 is essential for PS biosynthesis. Reciprocal crossing revealed reduced pss1 transmission via male gametophytes, predicting a rate of 61.6%pss1-1 pollen defects in PSS1/pss1-1 plants. Alexander's staining of inseparable qrt1-1 PSS1/pss1-1 quartets revealed a rate of 42% having three or four dead pollen grains, suggesting sporophytic pss1-1 cell death effects. Analysis with the nuclear stain 4',6-diamidino-2-phenylindole (DAPI) showed that all tetrads from PSS1/pss1-1 anthers retain their nuclei, whereas unicellular microspores were sometimes anucleate. Transgenic Arabidopsis expressing a GFP-LactC2 construct that binds PS revealed vesicular staining in tetrads and bicellular microspores and nuclear membrane staining in unicellular microspores. Hence, distribution and/or transport of PS across membranes were dynamically regulated in pollen microspores. However, among unicellular microspores from PSS1/pss1-2 GFP-LactC2 plants, all anucleate microspores showed little GFP-LactC2 fluorescence, suggesting that pss1-2 microspores are more sensitive to sporophytic defects or show partial gametophytic defects.  相似文献   
992.
The E8 promoter, a tomato fruit-ripening-specific promoter, and the CaMV 35S promoter, a constitutive promoter, were used to express the miraculin gene encoding the taste-modifying protein in tomato. The accumulation of miraculin protein and mRNA was compared among transgenic tomatoes expressing the miraculin gene driven by these promoters. Recombinant miraculin protein predominantly accumulated in transgenic tomato lines using the E8 promoter (E8-MIR) only at the red fruit stage. The accumulations were almost uniform among all fruit tissues. When the 35S promoter (35S-MIR) was used, miraculin accumulation in the exocarp was much higher than in other tissues, indicating that the miraculin accumulation pattern can be regulated by using different types of promoters. We also discuss the potential of the E8-MIR lines for practical use.  相似文献   
993.
Oku T  Ando S  Hayakawa T  Baba K  Nishi R  Shiozaki K  Yamada S 《Peptides》2011,32(4):648-655
Imidazole-related dipeptides, such as carnosine and anserine, occur widely in skeletal muscles of jawed vertebrates. All of the known enzymes that catalyze the hydrolysis of these dipeptides belong to the M20A metallopeptidase subfamily; two secretory enzymes, serum carnosinase (EC 3.4.13.20) and anserinase (EC 3.4.13.5), and one non-secretory enzyme, cytosolic nonspecific dipeptidase (EC 3.4.13.18). Here we report the enzymatic characterization and molecular identification of an unidentified enzyme, which catalyzes the hydrolysis of these dipeptides, from the skeletal muscle of Far Eastern brook lamprey (Lethenteron reissneri). A 60-kDa subunit protein of the enzyme was purified to near homogeneity. We cloned two M20A genes from the skeletal muscle of Far Eastern brook lamprey; one was a secretory-type gene encoding for the 60-kD protein, and another was a non-secretory-type gene presumably encoding for cytosolic nonspecific dipeptidase. Our findings indicate that the purified enzyme is a N-glycosylated secretory M20A dipeptidase distributed specifically in the jawless vertebrate group, and may be derived from a common ancestor gene between serum carnosinase and anserinase. We propose that this dipeptidase is a novel secretory M20A enzyme and is classified as neither serum carnosinase nor anserinase.  相似文献   
994.
The phosphorylation of heterochromatin protein 1 (HP1) has been previously described in studies of mammals, but the biological implications of this modification remain largely elusive. Here, we show that the N-terminal phosphorylation of HP1α plays a central role in its targeting to chromatin. Recombinant HP1α prepared from mammalian cultured cells exhibited a stronger binding affinity for K9-methylated histone H3 (H3K9me) than that produced in Escherichia coli. Biochemical analyses revealed that HP1α was multiply phosphorylated at N-terminal serine residues (S11-14) in human and mouse cells and that this phosphorylation enhanced HP1α's affinity for H3K9me. Importantly, the N-terminal phosphorylation appeared to facilitate the initial binding of HP1α to H3K9me by mediating the interaction between HP1α and a part of the H3 tail that was distinct from the methylated K9. Unphosphorylatable mutant HP1α exhibited severe heterochromatin localization defects in vivo, and its prolonged expression led to increased chromosomal instability. Our results suggest that HP1α's N-terminal phosphorylation is essential for its proper targeting to heterochromatin and that its binding to the methylated histone tail is achieved by the cooperative action of the chromodomain and neighboring posttranslational modifications.  相似文献   
995.
Boron is an essential nutrient for plants, but it is toxic in excess. Transgenic rice plants expressing an Arabidopsis thaliana borate efflux transporter gene, AtBOR4, at a low level exhibited increased tolerance to excess boron. Those lines with high levels of expression exhibited reduced growth. These findings suggest a potential of the borate transporter BOR4 for the generation of high-boron tolerant rice.  相似文献   
996.
The brain of gastropod mollusks contains many giant neurons with polyploid genomic DNAs. Such DNAs are generated through repeated DNA endoreplication during body growth. However, it is not known what triggers DNA endoreplication in neurons. There are two possibilities: (1) DNAs are replicated in response to some unknown molecules in the hemolymph that reflect the nutritive status of the animal; or (2) DNAs are replicated in response to some unknown factors that are retrogradely transported through axons from the innervated target organs. We first tested whether hemolymph with rich nutrition could induce DNA endoreplication. We tested whether the transplanted brain exhibits enhanced DNA endoreplication like an endogenous brain does when transplanted into the homocoel of the body of a slug whose body growth is promoted by an increased food supply. However, no enhancement was observed in the frequency of DNA endoreplication when we compared the transplanted brains in the growth‐promoted and growth‐suppressed host slugs, suggesting that the humoral environment is irrelevant to triggering the body growth‐dependent DNA endoreplication. Next, we tested the requirement of target innervation by surgically dissecting a unilateral posterior pedal nerve of an endogenous brain. Substantially lower number of neurons exhibited DNA endoreplication in the pedal ganglion ipsilateral to the dissected nerve. These results support the view that enhanced DNA endoreplication is mediated by target innervation and is not brought about through the direct effect of humoral factors in the hemolymph during body growth. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 609–620, 2013  相似文献   
997.
Cell micropatterning, a method to place cells at arbitrary regions, is becoming an essential tool to conduct cell biology and tissue engineering. Conventional cell patterning techniques usually allow only single patterning with single cell type on the same culture surface. However, biomedical research today requires even sophisticated fabrication methods that require spatiotemporal control of multiple cell arrangements. Here we introduce in situ cell micropatterning system which enables stepwise cell patterning using a photoresponsive cell culture surface (PRCS) whose cell adhesiveness could be altered by the UV irradiation. To demonstrate an application to tissue engineering, a liver‐mimic tissue array was fabricated and liver‐specific gene expressions were quantified with real time PCR. Patterned co‐culture systems composed of HepG2 spheroids with Balb/3T3 were fabricated, and the optimum spheroid diameter, which yielded the highest cellular functions, was determined to be 150 µm. After 20 days of patterned co‐culture of HepG2 spheroids and Balb/3T3, CYP3A4 expression increased 50‐fold higher than conventionally cultured HepG2; CYP3A4 expression was 20% higher than randomly co‐cultured HepG2 and Balb/3T3. Thus the combination of PRCS and the photomask‐free irradiation apparatus showed the versatility of experimental setups and proved to be a powerful tool for biomedical studies. Biotechnol. Bioeng. 2009;103: 552–561. © 2009 Wiley Periodicals, Inc.  相似文献   
998.
A short synthesis of new β-1-C-alkyl-1,5-dideoxy-1,5-imino-l-iditols by means of the diastereoselective addition of Grignard reagents onto a glucopyranosylamine is described. These compounds were evaluated as β-glucocerebrosidase inhibitors and their activity was compared with that of related iminosugar derivatives in the d-gluco and d-xylo series. The results allowed us to conclude on the influence of the hydroxymethyl moiety and of the piperidine-ring conformation on the inhibitory activity.  相似文献   
999.
Previous work has shown that the obligate intracellular amoebal endosymbiont Neochlamydia S13, an environmental chlamydia strain, has an amoebal infection rate of 100%, but does not cause amoebal lysis and lacks transferability to other host amoebae. The underlying mechanism for these observations remains unknown. In this study, we found that the host amoeba could completely evade Legionella infection. The draft genome sequence of Neochlamydia S13 revealed several defects in essential metabolic pathways, as well as unique molecules with leucine-rich repeats (LRRs) and ankyrin domains, responsible for protein-protein interaction. Neochlamydia S13 lacked an intact tricarboxylic acid cycle and had an incomplete respiratory chain. ADP/ATP translocases, ATP-binding cassette transporters, and secretion systems (types II and III) were well conserved, but no type IV secretion system was found. The number of outer membrane proteins (OmcB, PomS, 76-kDa protein, and OmpW) was limited. Interestingly, genes predicting unique proteins with LRRs (30 genes) or ankyrin domains (one gene) were identified. Furthermore, 33 transposases were found, possibly explaining the drastic genome modification. Taken together, the genomic features of Neochlamydia S13 explain the intimate interaction with the host amoeba to compensate for bacterial metabolic defects, and illuminate the role of the endosymbiont in the defense of the host amoebae against Legionella infection.  相似文献   
1000.
Most of experiments for HCV infection have been done using lytic infection systems, in which HCV-infected cells inevitably die. Here, to elucidate metabolic alteration in HCV-infected cells in a more stable condition, we established an HCV-persistently-infected cell line, designated as HPI cells. This cell line has displayed prominent steatosis and supported HCV infection for more than 2 years, which is the longest ever reported. It enabled us to analyze metabolism in the HCV-infected cells integrally combining metabolomics and expression arrays. It revealed that rate-limiting enzymes for biosynthesis of cholesterol and fatty acids were up-regulated with actual increase in cholesterol, desmosterol (cholesterol precursor) and pool of fatty acids. Notably, the pentose phosphate pathway was facilitated with marked up-regulation of glucose-6-phosphate dehydrogenase, a rete-limiting enzyme, with actual increase in NADPH. In its downstream, enzymes for purine synthesis were also up-regulated resulting in increase of purine. Contrary to common cancers, the TCA cycle was preferentially facilitated comparing to glycolysis pathway with a marked increase of most of amino acids. Interestingly, some genes controlled by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master regulator of antioxidation and metabolism, were constitutively up-regulated in HPI cells. Knockdown of Nrf2 markedly reduced steatosis and HCV infection, indicating that Nrf2 and its target genes play important roles in metabolic alteration and HCV infection. In conclusion, HPI cell is a bona fide HCV-persistently-infected cell line supporting HCV infection for years. This cell line sustained prominent steatosis in a hypermetabolic status producing various metabolites. Therefore, HPI cell is a potent research tool not only for persistent HCV infection but also for liver metabolism, overcoming drawbacks of the lytic infection systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号