首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2146篇
  免费   107篇
  国内免费   1篇
  2254篇
  2022年   12篇
  2021年   29篇
  2020年   11篇
  2019年   11篇
  2018年   32篇
  2017年   29篇
  2016年   43篇
  2015年   60篇
  2014年   75篇
  2013年   107篇
  2012年   128篇
  2011年   135篇
  2010年   88篇
  2009年   98篇
  2008年   124篇
  2007年   136篇
  2006年   131篇
  2005年   131篇
  2004年   112篇
  2003年   134篇
  2002年   109篇
  2001年   35篇
  2000年   32篇
  1999年   35篇
  1998年   33篇
  1997年   28篇
  1996年   14篇
  1995年   23篇
  1994年   18篇
  1993年   9篇
  1992年   31篇
  1991年   35篇
  1990年   21篇
  1989年   28篇
  1988年   13篇
  1987年   11篇
  1986年   8篇
  1985年   16篇
  1984年   9篇
  1983年   8篇
  1982年   8篇
  1980年   6篇
  1979年   7篇
  1978年   11篇
  1974年   6篇
  1972年   6篇
  1970年   9篇
  1969年   9篇
  1968年   10篇
  1967年   6篇
排序方式: 共有2254条查询结果,搜索用时 15 毫秒
191.
E6‐associated protein (E6AP) is a cellular ubiquitin protein ligase that mediates ubiquitylation and degradation of tumor suppressor p53 in conjunction with the high‐risk human papillomavirus E6 protein. We previously reported that E6AP targets annexin A1 protein for ubiquitin‐dependent proteasomal degradation. To gain a better understanding of the physiological function of E6AP, we have been seeking to identify novel substrates of E6AP. Here, we identified peroxiredoxin 1 (Prx1) as a novel E6AP‐binding protein using a tandem affinity purification procedure coupled with mass spectrometry. Prx1 is a 25‐kDa member of the Prx family, a ubiquitous family of antioxidant peroxidases that regulate many cellular processes through intracellular oxidative signal transduction pathways. Immunoprecipitation analysis showed that E6AP binds Prx1 in vivo. Pull‐down experiments showed that E6AP binds Prx1 in vitro. Ectopic expression of E6AP enhanced the degradation of Prx1 in vivo. In vivo and in vitro ubiquitylation assays revealed that E6AP promoted polyubiquitylation of Prx1. RNAi‐mediated downregulation of endogenous E6AP increased the level of endogenous Prx1 protein. Taken together, our data suggest that E6AP mediates the ubiquitin‐dependent proteasomal degradation of Prx1. Our findings raise a possibility that E6AP may play a role in regulating Prx1‐dependent intracellular oxidative signal transduction pathways. J. Cell. Biochem. 111: 676–685, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
192.
193.
It seems likely that the influences of light upon circadian rhythms will decrease with aging, particularly those rhythms that are more influenced by light with a higher color temperature and richer in short wavelengths. More specifically, cataract patients' optical systems transmit light poorly, especially the shorter wavelengths that affect the circadian system more. The present study investigated melatonin secretion profiles and sleep patterns before and after cataract surgery. Fifteen subjects were studied for 3 consecutive weekdays before, and one month after, their cataract surgery. UV-cutting intra-ocular lenses were used for patients after surgery. No statistically significant differences between before and after surgery were observed in the amount of light received and the amount of activity. This means that there were no significant changes in their lifestyle during the experimental period. Considering the group as a whole, no significant differences were present in melatonin secretion, sleep parameters, or sleepiness before and after the surgery. However, individual subjects responded differently. The subjects showed a negative correlation between the wake-up (p=0.067) or retiring times (p=0.017) and sleep efficiency after surgery. The amount of light received during the nighttime influenced sleep more significantly than during the daytime.  相似文献   
194.
The formation of radicals in bovine cytochrome c oxidase (bCcO), during the O(2) redox chemistry and proton translocation, is an unresolved controversial issue. To determine if radicals are formed in the catalytic reaction of bCcO under single turnover conditions, the reaction of O(2) with the enzyme, reduced by either ascorbate or dithionite, was initiated in a custom-built rapid freeze quenching (RFQ) device and the products were trapped at 77K at reaction times ranging from 50μs to 6ms. Additional samples were hand mixed to attain multiple turnover conditions and quenched with a reaction time of minutes. X-band (9GHz) continuous wave electron paramagnetic resonance (CW-EPR) spectra of the reaction products revealed the formation of a narrow radical with both reductants. D-band (130GHz) pulsed EPR spectra allowed for the determination of the g-tensor principal values and revealed that when ascorbate was used as the reductant the dominant radical species was localized on the ascorbyl moiety, and when dithionite was used as the reductant the radical was the SO(2)(-) ion. When the contributions from the reductants are subtracted from the spectra, no evidence for a protein-based radical could be found in the reaction of O(2) with reduced bCcO. As a surrogate for radicals formed on reaction intermediates, the reaction of hydrogen peroxide (H(2)O(2)) with oxidized bCcO was studied at pH 6 and pH 8 by trapping the products at 50μs with the RFQ device to determine the initial reaction events. For comparison, radicals formed after several minutes of incubation were also examined, and X-band and D-band analysis led to the identification of radicals on Tyr-244 and Tyr-129. In the RFQ measurements, a peroxyl (ROO) species was formed, presumably by the reaction between O(2) and an amino acid-based radical. It is postulated that Tyr-129 may play a central role as a proton loading site during proton translocation by ejecting a proton upon formation of the radical species and then becoming reprotonated during its reduction via a chain of three water molecules originating from the region of the propionate groups of heme a(3). This article is part of a Special Issue entitled: "Allosteric cooperativity in respiratory proteins".  相似文献   
195.
Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions.  相似文献   
196.
Recently, we discovered novel silver(I)-mediated cytosine–cytosine base pair (C–AgI–C) in DNA duplexes. To understand the properties of these base pairs, we searched for a DNA sequence that can be used in NMR structure determination. After extensive sequence optimizations, a non-symmetric 15-base-paired DNA duplex with a single C–AgI–C base pair flanked by 14 A–T base pairs was selected. In spite of its challenging length for NMR measurements (30 independent residues) with small sequence variation, we could assign most non-exchangeable protons (254 out of 270) and imino protons for structure determination.  相似文献   
197.
The goal of this study was to calculate the average CO2 emissions for manufacturing three commodity plastics, polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) in Japan. The CO2 emissions were calculated from cradle to gate, excluding the calcination processes after use. As the results, the followings were observed: 1) The gross CO2 emissions for the manufacture of plastics in Japan were 1.3, 1.4, and 1.7 kg-CO2/kg-PE, PP, and PVC, respectively. These mainly reflected the difference of CO2 emissions for the in-house electricity generation. 2) The CO2 emissions for the electricity used for manufacturing PVC were higher than that used for PE and PP, because additional electricity was required for the electrolysis to produce chlorine. The gross electricity consumption for manufacturing PVC was 1.3 kWh/kg-PVC, and the other plastics consumed 0.5 kWh/kg-Products. In addition, the effects of energy saving were studied using a projected gas-diffusion electrode for the electrolysis of salt on the reduction of CO2 emissions. It was estimated that the reduction in CO2 emissions was 7% compared with the present PVC manufacturing processes.  相似文献   
198.
Lactococcus lactis 61-14 isolated from river water produced a bacteriocin active against a wide range of Gram-positive bacteria. N-terminal amino acid sequencing, mass spectral analysis of the purified bacteriocin, and genetic analysis using nisin-specific primers showed that the bacteriocin was a new natural nisin variant, termed nisin Q. Nisin Q and nisin A differ in four amino acids in the mature peptide and two in the leader sequence.  相似文献   
199.
Iron (Fe) deficiency significantly effects plant growth and development. Plant symptoms under excess zinc (Zn) resemble symptoms of Fe‐deficient plants. To understand cross‐talk between excess Zn and Fe deficiency, we investigated physiological parameters of Arabidopsis plants and applied iTRAQ‐OFFGEL quantitative proteomic approach to examine protein expression changes in microsomal fraction from Arabidopsis shoots under those physiological conditions. Arabidopsis plants manifested shoot inhibition and chlorosis symptoms when grown on Fe‐deficient media compared to basal MGRL solid medium. iTRAQ‐OFFGEL approach identified 909 differentially expressed proteins common to all three biological replicates; the majority were transporters or proteins involved in photosynthesis, and ribosomal proteins. Interestingly, protein expression changes between excess Zn and Fe deficiency showed similar pattern. Further, the changes due to excess Zn were dramatically restored by the addition of Fe. To obtain biological insight into Zn and Fe cross‐talk, we focused on transporters, where STP4 and STP13 sugar transporters were predominantly expressed and responsive to Fe‐deficient conditions. Plants grown on Fe‐deficient conditions showed significantly increased level of sugars. These results suggest that Fe deficiency might lead to the disruption of sugar synthesis and utilization.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号