首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   46篇
  425篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   15篇
  2020年   10篇
  2019年   11篇
  2018年   13篇
  2017年   19篇
  2016年   26篇
  2015年   18篇
  2014年   17篇
  2013年   21篇
  2012年   30篇
  2011年   39篇
  2010年   21篇
  2009年   18篇
  2008年   14篇
  2007年   28篇
  2006年   22篇
  2005年   21篇
  2004年   11篇
  2003年   15篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
排序方式: 共有425条查询结果,搜索用时 15 毫秒
101.
Rad23 functions in nucleotide excision repair and proteasome-mediated protein degradation. It has four distinct structural domains that are connected by flexible linker regions, including an N-terminal ubiquitin-like (UBL) domain that binds proteasomes. We report in this NMR study the 1H, 15N and 13C resonance assignments for the backbone and side chain atoms of the Rad23 UBL domain (Rad23UBL) with BioMagResBank accession number 25825. We find that a Rad23 proline amino acid (P20) located in a loop undergoes isomerization. The secondary structural elements predicted from the NMR data fit well to that of the Rad23UBL when complexed with E4 ubiquitin ligase Ufd2, as reported in a crystallographic structure. These complete assignments can be used to study the protein dynamics of the Rad23UBL and its interaction of with other ubiquitin receptors or proteasome subunits.  相似文献   
102.
Sex allocation theory assumes that offspring sex (son vs. daughter) has consequences for maternal fitness. The most compelling experiment to test this theory would involve manipulating offspring sex and measuring the fitness consequences of having the “wrong” sex. Unfortunately, the logistical challenges of such an experiment limit its application. In tammar wallabies (Macropus eugenii), previous evidence suggests that mothers in good body condition are more likely to produce sons compared to mothers in poor condition, in support of the Trivers-Willard Hypothesis (TW) of condition-dependent sex allocation. More recently, we have found in our population of tammar wallabies that females with seemingly poor access to resources (based on condition loss over the dry summer) are more likely to produce sons, consistent with predictions from the Local Resource Competition (LRC) hypothesis, which proposes that production of sons or daughters is driven by the level of potential competition between mothers and philopatric daughters. We conducted a cross-fostering experiment in free-ranging tammar wallabies to disassociate the effects of rearing and birthing offspring of each sex. This allowed us to test the prediction of the LRC hypothesis that rearing daughters reduces the future direct fitness of mothers post-weaning and the prediction of the TW hypothesis that rearing sons requires more energy during lactation. Overall, we found limited costs to the mother of rearing the “wrong” sex, with switching of offspring sex only reducing the likelihood of a mother having a pouch young the following year. Thus, we found some support for both hypotheses in that rearing an unexpected son or an unexpected daughter both lead to reduced future maternal fitness. The study suggests that there may be context-specific costs associated with rearing the “wrong” sex.  相似文献   
103.
Four Glomus species/isolates from arid, semi-arid and mesic areas were evaluated for their effects on growth and water use characteristics of young Citrus volkameriana (′Volkamer′ lemon) under well-watered conditions, followed by three soil-drying episodes of increasing severity (soil moisture tensions of –0.02, –0.06, and –0.08 MPa) and recovery conditions. Arbuscular mycorrhizal (AM) plants were also compared to non-AM plants given extra phosphorus (P) fertilizer. AM plants and non-AM plants had similar shoot size (dry weight and canopy area), but all AM fungus treatments stimulated root growth (dry weight and length). Leaf P concentrations were 12–56% higher in AM plants than non-AM plants. Enhanced root growth was positively correlated with leaf P concentration. In general, AM plants had greater whole-plant transpiration than non-AM plants under well-watered conditions, under mild water stress and during recovery from moderate and severe soil drying. This suggests a faster recovery from moisture stress by AM plants. AM plants had lower leaf conductance than non-AM plants when exposed to severe soil drying. Although the greatest differences were between AM and non-AM plants, plants treated with Glomus isolates differed in colonization level, leaf P concentration, root length, transpiration flux and leaf conductance.  相似文献   
104.
Bacterial signaling histidine kinases (HKs) have long been postulated to function exclusively through linear signal transduction chains. However, several HKs have recently been shown to form complex multikinase networks (MKNs). The most prominent MKN, involving the enzymes RetS and GacS, controls the switch between the motile and biofilm lifestyles in the pathogenic bacterium Pseudomonas aeruginosa. While GacS promotes biofilm formation, RetS counteracts GacS using three distinct mechanisms. Two are dephosphorylating mechanisms. The third, a direct binding between the RetS and GacS HK regions, blocks GacS autophosphorylation. Focusing on the third mechanism, we determined the crystal structure of a cocomplex between the HK region of RetS and the dimerization and histidine phosphotransfer (DHp) domain of GacS. This is the first reported structure of a complex between two distinct bacterial signaling HKs. In the complex, the canonical HK homodimerization interface is replaced by a strikingly similar heterodimeric interface between RetS and GacS. We further demonstrate that GacS autophosphorylates in trans, thus explaining why the formation of a RetS-GacS complex inhibits GacS autophosphorylation. Using mutational analysis in conjunction with bacterial two-hybrid and biofilm assays, we not only corroborate the biological role of the observed RetS-GacS interactions, but also identify a residue critical for the equilibrium between the RetS-GacS complex and the respective RetS and GacS homodimers. Collectively, our findings suggest that RetS and GacS form a domain-swapped hetero-oligomer during the planktonic growth phase of P. aeruginosa before unknown signals cause its dissociation and a relief of GacS inhibition to promote biofilm formation.  相似文献   
105.
Ecological context—the biotic and abiotic environment, along with its influence on population mixing dynamics and individual susceptibility—is thought to have major bearing on epidemic outcomes. However, direct comparisons of wildlife disease events in contrasting ecological contexts are often confounded by concurrent differences in host genetics, exposure histories, or pathogen strains. Here, we compare disease dynamics of a Mycoplasma ovipneumoniae spillover event that affected bighorn sheep populations in two contrasting ecological contexts. One event occurred on the herd''s home range near the Rio Grande Gorge in New Mexico, while the other occurred in a captive facility at Hardware Ranch in Utah. While data collection regimens varied, general patterns of antibody signal strength and symptom emergence were conserved between the two sites. Symptoms appeared in the captive setting an average of 12.9 days postexposure, average time to seroconversion was 24.9 days, and clinical signs peaked at approximately 36 days postinfection. These patterns were consistent with serological testing and subsequent declines in symptom intensity in the free‐ranging herd. At the captive site, older animals exhibited more severe declines in body condition and loin thickness, higher symptom burdens, and slower antibody response to the pathogen than younger animals. Younger animals were more likely than older animals to clear infection by the time of sampling at both sites. The patterns presented here suggest that environment may not be a major determinant of epidemiological outcomes in the bighorn sheep—M. ovipneumoniae system, elevating the possibility that host‐ or pathogen‐factors may be responsible for observed variation.  相似文献   
106.
107.
The movement of proteins between the cytoplasm and nucleus mediated by the importin superfamily of proteins is essential to many cellular processes, including differentiation and development, and is critical to disease states such as viral disease and oncogenesis. We recently developed a high-throughput screen to identify specific and general inhibitors of protein nuclear import, from which ivermectin was identified as a potential inhibitor of importin α/β-mediated transport. In the present study, we characterized in detail the nuclear transport inhibitory properties of ivermectin, demonstrating that it is a broad-spectrum inhibitor of importin α/β nuclear import, with no effect on a range of other nuclear import pathways, including that mediated by importin β1 alone. Importantly, we establish for the first time that ivermectin has potent antiviral activity towards both HIV-1 and dengue virus, both of which are strongly reliant on importin α/β nuclear import, with respect to the HIV-1 integrase and NS5 (non-structural protein 5) polymerase proteins respectively. Ivermectin would appear to be an invaluable tool for the study of protein nuclear import, as well as the basis for future development of antiviral agents.  相似文献   
108.
Iron is a key trace element important for many biochemical processes and its availability varies with the environment. For human pathogenic fungi iron acquisition can be particularly problematical because host cells sequester free iron as part of the acute‐phase response to infection. Fungi rely on high‐affinity iron uptake systems, such as reductive iron assimilation (RIA) and siderophore‐mediated iron uptake (non‐RIA). These have been extensively studied in pathogenic fungi that exist outside of host cells, but much less is known for intracellular fungal pathogens. Talaromyces marneffei is a dimorphic fungal pathogen endemic to Southeast Asia. In the host T. marneffei resides within macrophages where it grows as a fission yeast. T. marneffei has genes of both iron assimilation systems as well as a paralogue of the siderophore biosynthetic gene sidA, designated sidX. Unlike other fungi, deletion of sidA or sidX resulted in cell type‐specific effects. Mutant analysis showed that T. marneffei yeast cells also employ RIA for iron acquisition, providing an additional system in this cell type that differs substantially from hyphal cells. These data illustrate the specialized iron acquisition systems used by the different cell types of a dimorphic fungal pathogen and highlight the complexity in siderophore‐biosynthetic pathways amongst fungi.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号