首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4506篇
  免费   568篇
  国内免费   2篇
  2023年   35篇
  2022年   49篇
  2021年   134篇
  2020年   69篇
  2019年   80篇
  2018年   128篇
  2017年   89篇
  2016年   135篇
  2015年   230篇
  2014年   239篇
  2013年   242篇
  2012年   278篇
  2011年   283篇
  2010年   171篇
  2009年   147篇
  2008年   180篇
  2007年   179篇
  2006年   155篇
  2005年   124篇
  2004年   147篇
  2003年   139篇
  2002年   123篇
  2001年   84篇
  2000年   105篇
  1999年   59篇
  1998年   42篇
  1997年   36篇
  1996年   34篇
  1995年   36篇
  1992年   55篇
  1991年   61篇
  1990年   57篇
  1989年   43篇
  1988年   45篇
  1987年   50篇
  1986年   48篇
  1985年   62篇
  1984年   41篇
  1983年   36篇
  1982年   36篇
  1980年   39篇
  1979年   41篇
  1977年   38篇
  1976年   32篇
  1975年   37篇
  1974年   37篇
  1973年   43篇
  1972年   42篇
  1971年   34篇
  1968年   33篇
排序方式: 共有5076条查询结果,搜索用时 78 毫秒
211.
Pharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming. Moreover, these practices are molecule-specific and so only support one assay for one program at a time. Here, we describe a strategy to generate a unique assay reagent, 10C4, that preferentially recognizes a panel of recombinant human mAbs over endogenous human immunoglobulins. This “panel-specific” feature enables the reagent to be used in PK and IHC assays for multiple structurally-related therapeutic mAbs. Characterization revealed that the 10C4 epitope is conformational, extensive and mainly composed of non-CDR residues. Most key contact residues were conserved among structurally-related therapeutic mAbs, but the combination of these residues exists at low prevalence in endogenous human immunoglobulins. Interestingly, an indirect contact residue on the heavy chain of the therapeutic appears to play a critical role in determining whether or not it can bind to 10C4, but has no affect on target binding. This may allow us to improve the binding of therapeutic mAbs to 10C4 for assay development in the future. Here, for the first time, we present a strategy to develop a panel-specific reagent that can expedite the development of multiple clinical assays for structurally-related therapeutic mAbs.  相似文献   
212.
Many cancer research efforts focus on exploiting genetic-level features that may be targeted for therapy. Tissue-level features of the tumour microenvironment also represent useful therapeutic targets. Here we investigate the presence of low oxygen tension and sensitivity to NOS inhibition of tumour vasculature as potential tumour-specific features that may be targeted by hypoxic cytotoxins, a class of therapeutics currently under investigation. We have previously demonstrated that tirapazamine (TPZ) mediates central vascular dysfunction in tumours. TPZ is a hypoxic cytotoxin that is also a competitive inhibitor of NOS. Here we further investigated the vascular-targeting activity of TPZ by combining it with NOS inhibitor L-NNA, or with low oxygen content gas breathing. Tumours were analyzed via multiplex immunohistochemical staining that revealed irreversible loss of perfusion and enhanced tumour cell death when TPZ was combined with either low oxygen or a NOS inhibitor. Tumour growth rate was reduced by TPZ + NOS inhibition, and tumours previously resistant to TPZ-mediated vascular dysfunction were sensitized by low oxygen breathing. Additional mapping analysis suggests that tumours with reduced vascular-associated stroma may have greater sensitivity to these effects. These results indicate that poorly oxygenated tumour vessels, also being abnormally organized and with inadequate smooth muscle, may be successfully targeted for significant anti-cancer effects by inhibition of NOS and hypoxia-activated prodrug toxicity. This strategy illustrates a novel use of hypoxia-activated cytotoxic prodrugs as vascular targeting agents, and also represents a novel mechanism for targeting tumour vessels.  相似文献   
213.
While the demonstrated power conversion efficiency of organic photovoltaics (OPVs) now exceeds 10%, new design rules are required to tailor interfaces at the molecular level for optimal exciton dissociation and charge transport in higher efficiency devices. We show that molecular shape‐complementarity between donors and acceptors can drive performance in OPV devices. Using core hole clock (CHC) X‐ray spectroscopy and density functional theory (DFT), we compare the electronic coupling, assembly, and charge transfer rates at the interface between C60 acceptors and flat‐ or contorted‐hexabenzocorone (HBC) donors. The HBC donors have similar optoelectronic properties but differ in molecular contortion and shape matching to the fullerene acceptors. We show that shape‐complementarity drives self‐assembly of an intermixed morphology with a donor/acceptor (D/A) ball‐and‐socket interface, which enables faster electron transfer from HBC to C60. The supramolecular assembly and faster electron transfer rates in the shape complementary heterojunction lead to a larger active volume and enhanced exciton dissociation rate. This work provides fundamental mechanistic insights on the improved efficiency of organic photovoltaic devices that incorporate these concave/convex D/A materials.  相似文献   
214.
As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain''s putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior.  相似文献   
215.
216.
The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.  相似文献   
217.
218.
Treatment of cancer patients with chemotherapeutics like cyclophosphamide often causes alopecia as a result of premature and aberrant catagen. Because the epidermal growth factor receptor (EGFR) signals anagen hair follicles to enter catagen, we hypothesized that EGFR signaling may be involved in cyclophosphamide-induced alopecia. To test this hypothesis, skin-targeted Egfr mutant mice were generated by crossing floxed Egfr and Keratin 14 promoter-driven Cre recombinase mice. Cyclophosphamide treatment of control mice resulted in alopecia while Egfr mutant skin was resistant to cyclophosphamide-induced alopecia. Egfr mutant skin entered catagen normally, as indicated by dermal papilla condensation and decreased follicular proliferation, but did not progress to telogen as did Egfr wild type follicles. Egfr mutant follicles responded with less proliferation, apoptosis, and fewer p53-positive cells after cyclophosphamide. Treatment of control mice with the EGFR inhibitors erlotinib or gefitinib similarly suppressed alopecia and catagen progression by cyclophosphamide. Secondary analysis of clinical trials utilizing EGFR-targeted therapies and alopecia-inducing chemotherapy also revealed evidence for involvement of EGFR in chemotherapy-induced alopecia. Taken together, our results demonstrated the involvement of EGFR signaling in chemotherapy-induced alopecia, which will help in the design of novel therapeutic regimens to minimize chemotherapy-induced alopecia.  相似文献   
219.
Prion diseases are fatal neurodegenerative disorders characterized by misfolding of the cellular prion protein (PrPc) into the disease-associated isoform (PrPSc) that has increased β-sheet content and partial resistance to proteolytic digestion. Prion diseases from different mammalian species have varying propensities for transmission upon exposure of an uninfected host to the infectious agent. Chronic Wasting Disease (CWD) is a highly transmissible prion disease that affects free ranging and farmed populations of cervids including deer, elk and moose, as well as other mammals in experimental settings. The molecular mechanisms allowing CWD to maintain comparatively high transmission rates have not been determined. Previous work has identified a unique structural feature in cervid PrP, a rigid loop between β-sheet 2 and α-helix 2 on the surface of the protein. This study was designed to test the hypothesis that the rigid loop has a direct influence on the misfolding process. The rigid loop was introduced into murine PrP as the result of two amino acid substitutions: S170N and N174T. Wild-type and rigid loop murine PrP were expressed in E. coli and purified. Misfolding propensity was compared for the two proteins using biochemical techniques and cell free misfolding and conversion systems. Murine PrP with a rigid loop misfolded in cell free systems with greater propensity than wild type murine PrP. In a lipid-based conversion assay, rigid loop PrP converted to a PK resistant, aggregated isoform at lower concentrations than wild-type PrP. Using both proteins as substrates in real time quaking-induced conversion, rigid loop PrP adopted a misfolded isoform more readily than wild type PrP. Taken together, these findings may help explain the high transmission rates observed for CWD within cervids.  相似文献   
220.
Understanding how pathogenic organisms spread in the environment is crucial for the management of disease, yet knowledge of propagule dispersal and transmission in aquatic environments is limited. We conducted empirical studies using the aquatic virus, infectious hematopoietic necrosis virus (IHNV), to quantify infectious dose, shedding capacity, and virus destruction rates in order to better understand the transmission of IHN virus among Atlantic salmon marine net-pen aquaculture. Transmission of virus and subsequent mortality in Atlantic salmon post-smolts was initiated with as low as 10 plaque forming units (pfu) ml−1. Virus shedding from IHNV infected Atlantic salmon was detected before the onset of visible signs of disease with peak shed rates averaging 3.2×107 pfu fish−1 hour−1 one to two days prior to mortality. Once shed into the marine environment, the abundance of free IHNV is modulated by sunlight (UV A and B) and the growth of natural biota present in the seawater. Virus decayed very slowly in sterilized seawater while rates as high as k =  4.37 d−1 were observed in natural seawater. Decay rates were further accelerated when exposed to sunlight with virus infectivity reduced by six orders of magnitude within 3 hours of full sunlight exposure. Coupling the IHNV transmission parameter estimates determined here with physical water circulation models, will increase the understanding of IHNV dispersal and provide accurate geospatial predictions of risk for IHNV transmission from marine salmon sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号