首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2599篇
  免费   297篇
  国内免费   1篇
  2897篇
  2023年   31篇
  2022年   48篇
  2021年   109篇
  2020年   58篇
  2019年   63篇
  2018年   112篇
  2017年   68篇
  2016年   111篇
  2015年   182篇
  2014年   179篇
  2013年   181篇
  2012年   207篇
  2011年   211篇
  2010年   119篇
  2009年   107篇
  2008年   123篇
  2007年   119篇
  2006年   86篇
  2005年   72篇
  2004年   83篇
  2003年   83篇
  2002年   74篇
  2001年   27篇
  2000年   25篇
  1999年   26篇
  1998年   18篇
  1997年   10篇
  1996年   21篇
  1995年   15篇
  1994年   18篇
  1992年   15篇
  1991年   12篇
  1990年   19篇
  1989年   18篇
  1988年   14篇
  1987年   14篇
  1986年   18篇
  1985年   15篇
  1984年   12篇
  1983年   10篇
  1982年   17篇
  1980年   15篇
  1979年   10篇
  1978年   8篇
  1977年   12篇
  1976年   8篇
  1973年   16篇
  1972年   10篇
  1971年   10篇
  1968年   7篇
排序方式: 共有2897条查询结果,搜索用时 18 毫秒
81.
Tethered-particle motion experiments do not require expensive or technically complex hardware, and increasing numbers of researchers are adopting this methodology to investigate the topological effects of agents that act on the tethering polymer or the characteristics of the polymer itself. These investigations depend on accurate measurement and interpretation of changes in the effective length of the tethering polymer (often DNA). However, the bead size, tether length, and buffer affect the confined diffusion of the bead in this experimental system. To evaluate the effects of these factors, improved measurements to calibrate the two-dimensional range of motion (excursion) versus DNA length were carried out. Microspheres of 160 or 240 nm in radius were tethered by DNA molecules ranging from 225 to 3477 basepairs in length in aqueous buffers containing 100 mM potassium glutamate and 8 mM MgCl2 or 10 mM Tris-HCl and 200 mM KCl, with or without 0.5% Tween added to the buffer, and the motion was recorded. Different buffers altered the excursion of beads on identical DNA tethers. Buffer with only 10 mM NaCl and >5 mM magnesium greatly reduced excursion. Glycerol added to increase viscosity slowed confined diffusion of the tethered beads but did not change excursion. The confined-diffusion coefficients for all tethered beads were smaller than those expected for freely diffusing beads and decreased for shorter tethers. Tethered-particle motion is a sensitive framework for diffusion experiments in which small beads on long leashes most closely resemble freely diffusing, untethered beads.  相似文献   
82.
Brown ghost knife fish, Apteronotus leptorhynchus, continually emit a weakly electric discharge that serves as a communication signal and is sensitive to sex steroids. Males modulate this signal during bouts of aggression by briefly (approximately 15 ms) increasing the discharge frequency in signals termed "chirps." The present study examined the effects of short-term (1-7 days) and long-term (6-35 days) male-male interaction on the continuous electric organ discharge (EOD), chirping behavior, and plasma levels of cortisol and two androgens, 11-ketotestosterone (11KT) and testosterone. Males housed in isolation or in pairs were tested for short-term and long-term changes in their EOD frequency and chirping rate to standardized sinusoidal electrical stimuli. Within 1 week, chirp rate was significantly higher in paired fish than in isolated fish, but EOD frequency was equivalent in these two groups of fish. Plasma cortisol levels were significantly higher in paired fish than in isolated fish, but there was no difference between groups in plasma 11KT levels. Among paired fish, cortisol levels correlated positively with chirp rate. To determine whether elevated cortisol can cause changes in chirping behavior, isolated fish were implanted with cortisol-filled or empty Silastic tubes and tested for short-term and long-term changes in electrocommunication signals and steroid levels. After 2 weeks, fish that received cortisol implants showed higher chirp rates than blank-implanted fish; there were no difference between groups in EOD frequency. Cortisol implants significantly elevated plasma cortisol levels compared to blank implants but had no effect on plasma 11KT levels. These results suggest that male-male interaction increases chirp rate by elevating levels of plasma cortisol, which, in turn, acts to modify neural activity though an 11KT-independent mechanism.  相似文献   
83.

Zebra mussels (Dreissena polymorpha) filter feed phytoplankton and reduce available pelagic energy, potentially driving fish to use littoral energy sources in lakes. However, changes in food webs and energy flow in complex fish communities after zebra mussel establishment are poorly known. We assessed impacts of zebra mussels on fish littoral carbon use, trophic position, isotopic niche size, and isotopic niche overlap among individual fish species using δ13C and δ15N data collected before (2014) and after (2019) zebra mussel establishment in Lake Ida, MN. Isotope data were collected from 11 fish species, and from zooplankton and littoral invertebrates to estimate baseline isotope values. Mixing models were used to convert fish δ13C and δ15N into estimates of littoral carbon and trophic position, respectively. We tested whether trophic position, littoral carbon use, isotopic niche size, and isotopic niche overlap changed from 2014 to 2019 for each fish species. We found few effects on fish trophic position, but 10 out of 11 fish species increased littoral carbon use after zebra mussel establishment, with mean littoral carbon increasing from 43% before to 67% after establishment. Average isotopic niche size of individual species increased significantly (2.1-fold) post zebra mussels, and pairwise-niche overlap between species increased significantly (1.2-fold). These results indicate zebra mussels increase littoral energy dependence in the fish community, resulting in larger individual isotopic niches and increased isotopic niche overlap. These effects may increase interspecific competition among fish species and could ultimately result in reduced abundance of species less able to utilize littoral energy sources.

  相似文献   
84.
85.
Breeding Brünnich's guillemots Uria lomvia show stepwise mass loss at the time of hatch. This mass loss has usually been explained as an adaptation to reduce the cost of flight during the chick‐rearing period because flight time increases during that period. It is possible, however, that mass loss also increases dive performance during the chick‐rearing period because time spent diving also increases during that period. Reduced mass could reduce basal metabolic rate or costs associated with buoyancy and therefore increase aerobic dive limit. To examine the role of mass loss in dive behavior, we attached time‐depth‐temperature recorders for 24–48 h to chick‐rearing and incubating Brünnich's guillemots at Coats Island, Nunavut (2005: n=45, 2006: n=40), and recorded body mass before and after each deployment. There was no relationship between mass and dive duration during either incubation or chick‐rearing. Seventeen of the birds we sampled during incubation were resampled during chick‐rearing. For this group, dive duration increased with mass loss between incubation and chick‐rearing (r2=0.67–0.75). Mass loss occurred through reductions in metabolically‐active tissues (liver, bladder) and buoyant tissues (lipids) although muscle and gut mass did not change. Despite the large change in lipids, buoyancy only changed by 0.1%, and mass loss therefore did not have much effect on costs associated with buoyancy. Nonetheless, surface pause duration for a given dive depth decreased during chick‐rearing, supporting the idea that reduced mass led to increased aerobic dive limit through reduced metabolic rate and inertial costs; oxygen stores did not increase. We also attached neutrally (n=9) and negatively (n=11) buoyant handicaps to the legs of adults to assess the effect of artificial mass increases on time budgets. Artificially increasing mass decreased total time spent diving but did not change time spent flying. There was no change in shift length between incubation and chick‐rearing, and therefore no support for the idea that mass loss reflected a change in fasting endurance requirements. An energetic model suggested that the observed mass reduction reduced dive costs by 5–8% and flight costs by 3%. We concluded that mass loss may be as important for increasing dive performance as increasing flight performance.  相似文献   
86.
Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.  相似文献   
87.
88.
When nitrate is the only nitrogen source, Neurospora crassa's nitrate reductase (NR) shows endogenous oscillations in its nitrate reductase activity (NRA) on a circadian time scale. These NRA oscillations can be observed in darkness or continuous light conditions and also in a frq(9) mutant in which no functional FRQ protein is formed. Even in a white-collar-1 knockout mutant, NRA oscillations have been observed, although with a highly reduced amplitude. This indicates that the NRA oscillations are not a simple output rhythm of the white-collar-driven frq oscillator but may be generated by another oscillator that contains the nit-3 autoregulatory negative feedback loop as a part. In this negative feedback loop, a product in the reaction chain catalyzed by nitrate reductase, probably glutamine, induces repression of the nitrate reductase gene and thus downregulates its own production. This is the first example of an endogenous, nutritionally induced daily rhythm with known molecular components that is observed in the absence of an intact FRQ protein.  相似文献   
89.
We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1) infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII) of DENV-1 envelope (E) protein to 2.45 Å resolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号