首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2599篇
  免费   297篇
  国内免费   1篇
  2897篇
  2023年   31篇
  2022年   48篇
  2021年   109篇
  2020年   58篇
  2019年   63篇
  2018年   112篇
  2017年   68篇
  2016年   111篇
  2015年   182篇
  2014年   179篇
  2013年   181篇
  2012年   207篇
  2011年   211篇
  2010年   119篇
  2009年   107篇
  2008年   123篇
  2007年   119篇
  2006年   86篇
  2005年   72篇
  2004年   83篇
  2003年   83篇
  2002年   74篇
  2001年   27篇
  2000年   25篇
  1999年   26篇
  1998年   18篇
  1997年   10篇
  1996年   21篇
  1995年   15篇
  1994年   18篇
  1992年   15篇
  1991年   12篇
  1990年   19篇
  1989年   18篇
  1988年   14篇
  1987年   14篇
  1986年   18篇
  1985年   15篇
  1984年   12篇
  1983年   10篇
  1982年   17篇
  1980年   15篇
  1979年   10篇
  1978年   8篇
  1977年   12篇
  1976年   8篇
  1973年   16篇
  1972年   10篇
  1971年   10篇
  1968年   7篇
排序方式: 共有2897条查询结果,搜索用时 15 毫秒
41.
Finite volume ocean circulation and particle tracking models are used to simulate water-borne transmission of infectious hematopoietic necrosis virus (IHNV) among Atlantic salmon (Salmo salar) farms in the Discovery Islands region of British Columbia, Canada. Historical simulations for April and July 2010 are carried out to demonstrate the seasonal impact of river discharge, wind, ultra-violet (UV) radiation, and heat flux conditions on near-surface currents, viral dispersion and survival. Numerical particles released from infected farm fish in accordance with IHNV shedding rates estimated through laboratory experiments are dispersed by model oceanic flows. Viral particles are inactivated by ambient UV radiation levels and by the natural microbial community at rates derived through laboratory studies. Viral concentration maps showing temporal and spatial changes are produced and combined with lab-determined minimum infectious dosages to estimate the infective connectivity among farms. Results demonstrate that neighbouring naïve farms can become exposed to IHNV via water-borne transport from an IHNV diseased farm, with a higher risk in April than July, and that many events in the sequence of farm outbreaks in 2001-2002 are consistent with higher risks in our farm connectivity matrix. Applications to other diseases, transfers between farmed and wild fish, and the effect of vaccinations are also discussed.  相似文献   
42.
In this work, a freestanding NiS2/FeS holey film (HF) is prepared after electrochemical anodic and chemical vapor deposition treatments. With the combination of good electrical conductivity and holey structure, the NiS2/FeS HF presents superior electrochemical performance, due to the following reasons: (i) Porous structure of HF provides a large surface area and more active sites/channels/pathways to enhance the ion/mass diffusion. Moreover, the porous structure can reduce the damage from the volumetric expansion. (ii) The as‐prepared electrode combines the current collector (residual NiFe alloy) and active materials (sulfides) together, thus reducing the resistance of the electrode. Additionally, the good conductivity of HF can improve electron transport. (iii) Sulfides are more stable as active materials than sulfur, showing only a small capacity decay while retaining high cyclability performance. This work provides a promising way to develop high energy and stable electrode for Li‐S battery.  相似文献   
43.
Recent research has highlighted roles for non-coding RNA i7n the regulation of stress tolerance in bats. In this study, we propose that microRNA could also play an important role in neuronal maintenance during hibernation. To explore this possibility, RT-PCR was employed to investigate the expression of eleven microRNAs from the brain tissue of euthermic control and torpid bats. Results show that eight microRNAs (miR-21, -29b, -103, -107, -124a, -132, -183 and -501) increased (1.2–1.9 fold) in torpid bats, while the protein expression of Dicer, a microRNA processing enzyme, did not significantly change during torpor. Bioinformatic analysis of the differentially expressed microRNA suggests that these microRNAs are mainly involved in two processes: (1) focal adhesion and (2) axon guidance. To determine the extent of microRNA sequence conservation in the bat, we successfully identified bat microRNA from sequence alignments against known mouse (Mus musculus) microRNA. We successfully identified 206 conserved pre-microRNA sequences, leading to the identification of 344 conserved mature microRNA sequences. Sequence homology of the identified sequences was found to be 94.76 ± 3.95% and 98.87 ± 2.24% for both pre- and mature microRNAs, respectively. Results suggest that brain function related to the differentiation of neurons and adaptive neuroprotection may be under microRNA control during bat hibernation.  相似文献   
44.
Mutations in mitochondrial DNA polymerase (pol γ) cause several progressive human diseases including Parkinson''s disease, Alper''s syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol γ leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol γ deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol γ−α mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.  相似文献   
45.
In this study, the collapse temperature was determined using the freeze‐drying microscopy (FDM) method for a variety of cell culture medium‐based solutions (with 0.05–0.8 M trehalose) that are important for long‐term stabilization of living cells in the dry state at ambient temperature (lyopreservation) by freeze‐drying. Being consistent with what has been reported in the literature, the collapse temperature of binary water‐trehalose solutions was found to be similar to the glass transition temperature (Tg ~ ?30°C) of the maximally freeze‐concentrated trehalose solution (~80 wt% trehalose) during the freezing step of freeze‐drying, regardless of the initial concentration of trehalose. However, the effect of the initial trehalose concentration on the collapse temperature of the cell culture medium‐based trehalose solutions was identified to be much more significant, particularly when the trehalose concentration is less than 0.2 M (the collapse temperature can be as low as ?65°C). We also determined that cell density from 1 to 10 million cells/mL and ice seeding at high subzero temperatures (?4 and ?7°C) have negligible impact on the solution collapse temperature. However, ice seeding does significantly affect the ice crystal morphology formed during the freezing step and therefore the drying rate. Finally, bulking agents (mannitol) could significantly affect the collapse temperature only when trehalose concentration is low (<0.2 M). However, improving the collapse temperature by using a high concentration of trehalose might be preferred to the addition of bulking agents in the solutions for freeze‐drying of living cells. We further confirmed the applicability of the collapse temperature measured with small‐scale (2 µL) samples using the FDM system to freeze‐drying of large‐scale (1 mL) samples using scanning electron microscopy (SEM) data. Taken together, the results reported in this study should provide useful guidance to the development of optimal freeze‐drying protocols for lyopreservation of living cells at ambient temperature for easy maintenance and convenient wide distribution to end users, which is important to the eventual success of modern cell‐based medicine. Biotechnol. Bioeng. 2010;106: 247–259. © 2010 Wiley Periodicals, Inc.  相似文献   
46.
Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363−/− and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL−/− mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363−/− but unchanged in HSL−/− mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL−/− macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.  相似文献   
47.
Infectious hematopoietic necrosis (IHN) leads to periodic epidemics among certain wild and farmed fish species of the Northeast (NE) Pacific. The source of the IHN virus (IHNV) that initiates these outbreaks remains unknown; however, a leading hypothesis involves viral persistence in marine host species such as Pacific herring Clupea pallasii. Under laboratory conditions we exposed specific pathogen-free (SPF) larval and juvenile Pacific herring to 10(3) to 10(4) plaque-forming units (pfu) of IHNV ml(-1) by waterborne immersion. Cumulative mortalities among exposed groups were not significantly different from those of negative control groups. After waterborne exposure, IHNV was transiently recovered from the tissues of larvae but absent in tissues of juveniles. Additionally, no evidence of viral shedding was detected in the tank water containing exposed juveniles. After intraperitoneal (IP) injection of IHNV in juvenile herring with 10(3) pfu, IHNV was recovered from the tissues of sub-sampled individuals for only the first 5 d post-exposure. The lack of susceptibility to overt disease and transient levels of IHNV in the tissues of exposed fish indicate that Pacific herring do not likely serve a major epizootiological role in perpetuation of IHNV among free-ranging sockeye salmon Oncorhynchus nerka and farmed Atlantic salmon Salmo salar in the NE Pacific.  相似文献   
48.
The 32 000-dalton QB-protein of photosystem II (PS II) is rapidly damaged and removed from isolated pea thylakoids during incubation in the light resulting in a loss of photosynthetic electron flow through PS II. This in vitro photoinhibition is similar to that previously reported with intact Chlamydomonas cells. The damage occurs at a faster rate in vitro, however, due to the inability of isolated thylakoids to synthesize replacement QB-protein. The removal of the damaged QB-protein does not require any soluble components of the chloroplast stroma and is unaffected by the protease inhibitors phenyl-methylsulfonylfluoride or antipain. Unlike the effect of trypsin, no low mol. wt. membrane-bound or soluble fragments of the labelled QB-protein could be identified either by autoradiography or immunologically using polyclonal antibodies specific for the QB-protein. The lightinduced damage to the QB-protein (indicated by a loss of QB functional activity), preceded the removal of the protein from the membrane. We conclude that photodamage of the QB-protein generates a conformational change which renders the protein susceptible to attack by a highly efficient, intrinsic membrane protease.  相似文献   
49.
The Bioinformatics Resource Manager (BRM) is a software environment that provides the user with data management, retrieval and integration capabilities. Designed in collaboration with biologists, BRM simplifies mundane analysis tasks of merging microarray and proteomic data across platforms, facilitates integration of users' data with functional annotation and interaction data from public sources and provides connectivity to visual analytic tools through reformatting of the data for easy import or dynamic launching capability. BRM is developed using Java and other open-source technologies for free distribution. AVAILABILITY: BRM, sample data sets and a user manual can be downloaded from http://www.sysbio.org/dataresources/brm.stm.  相似文献   
50.
While studying the adult rat skeletal muscle Na+ channel outer vestibule, we found that certain mutations of the lysine residue in the domain III P region at amino acid position 1237 of the alpha subunit, which is essential for the Na+ selectivity of the channel, produced substantial changes in the inactivation process. When skeletal muscle alpha subunits (micro1) with K1237 mutated to either serine (K1237S) or glutamic acid (K1237E) were expressed in Xenopus oocytes and depolarized for several minutes, the channels entered a state of inactivation from which recovery was very slow, i.e., the time constants of entry into and exit from this state were in the order of approximately 100 s. We refer to this process as "ultra-slow inactivation". By contrast, wild-type channels and channels with the charge-preserving mutation K1237R largely recovered within approximately 60 s, with only 20-30% of the current showing ultra-slow recovery. Coexpression of the rat brain beta1 subunit along with the K1237E alpha subunit tended to accelerate the faster components of recovery from inactivation, as has been reported previously of native channels, but had no effect on the mutation-induced ultra-slow inactivation. This implied that ultra-slow inactivation was a distinct process different from normal inactivation. Binding to the pore of a partially blocking peptide reduced the number of channels entering the ultra-slow inactivation state, possibly by interference with a structural rearrangement of the outer vestibule. Thus, ultra-slow inactivation, favored by charge-altering mutations at site 1237 in micro1 Na+ channels, may be analogous to C-type inactivation in Shaker K+ channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号