首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2176篇
  免费   230篇
  2023年   29篇
  2022年   42篇
  2021年   101篇
  2020年   52篇
  2019年   62篇
  2018年   106篇
  2017年   65篇
  2016年   103篇
  2015年   173篇
  2014年   170篇
  2013年   163篇
  2012年   192篇
  2011年   190篇
  2010年   109篇
  2009年   95篇
  2008年   106篇
  2007年   101篇
  2006年   74篇
  2005年   57篇
  2004年   76篇
  2003年   72篇
  2002年   50篇
  2001年   18篇
  2000年   13篇
  1999年   12篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   4篇
  1983年   4篇
  1982年   9篇
  1979年   6篇
  1975年   3篇
  1973年   5篇
  1972年   6篇
  1971年   5篇
  1968年   5篇
  1959年   2篇
  1916年   2篇
排序方式: 共有2406条查询结果,搜索用时 31 毫秒
21.
Domain exchange constructs that traded regions surrounding the homeodomain were constructed for two kn1 -like genes, KNAT1 and KNAT3, and introduced into Arabidopsis thaliana under the control of the 35S CaMV promoter. The kn1-like homeodomain proteins all have the homeodomain located near the C-terminus of the protein, and also share a second conserved domain (the ELK domain) immediately N-terminal to the homeodomain. Progeny were scored for the appearance of the KNAT1 overexpression phenotype. A construct containing the KNAT3 N-terminus and the KNAT1 ELK- and homeodomain resulted in a KNAT1 overexpression phenotype, indicating that specificity mainly resides within the ELK- and homeodomain region. Further exchanges demonstrated that specificity probably does not arise from a single region within the ELK and/or homeodomain but rather requires sequences both N-terminal and C-terminal to residue 23 of the homeodomain. Further, in contrast to some animal homeodomains, KNAT1 does not utilize the residues of the N-terminal arm of the homeodomain for specificity.  相似文献   
22.
23.
The role of fatty acid metabolism in chemical-dependent cell injury is poorly understood. Addition of L-carnitine to the incubation medium of cultured hepatocytes delayed cell killing initiated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Protection by L-carnitine was stereospecific and observed as late as 1 h following addition of MPTP. D-Carnitine, but not iodoacetate, reversed the L-carnitine effect. Monoamine oxidase A and B activities, MPTP/N-methyl-4-phenyl-pyridinium levels, and MPTP-dependent loss of mitochondrial membrane potential measured by release of [3H]triphenylmethylphosphonium were not altered by addition of L-carnitine. Significant changes in MPTP-induced depletion of total cellular ATP did not occur with excess L-carnitine. Although the mechanism of cytoprotection exerted by L-carnitine remains unresolved, the data suggest that L-carnitine does not significantly alter: (i) mitochondrial-dependent bioactivation of MPTP; (ii) MPTP-dependent loss of mitochondrial membrane potential; or (iii) MPTP-mediated depletion of total cellular ATP content. We conclude that alterations of fatty acid metabolism may contribute to the toxic consequences of exposure to MPTP. Moreover, the lack of L-carnitine-mediated cytoprotection of monolayers incubated with 4-phenylpyridine or potassium cyanide suggests: (i) a link between fatty acid metabolism and mitochondrial membrane-mediated, bioactivation-dependent cell killing; and (ii) that inhibition of NADH dehydrogenase may not totally explain the mechanism of MPTP cytotoxicity.  相似文献   
24.
Summary Bacteriological tests were made on 24 lots of unfiltered calf serum collected for subsequent use as a component of tissue culture media. The examination included the isolation and identification of bacteria, assay of phages, and demonstration of endotoxin material. Only Gram-positive bacteria were isolated and 96% of the sera were contaminated with bacteria. The prevalent strains of bacteria found wereBacillus species and streptococci and 63% of the sera coagulatedLimulus amebocyte lysate. More than 90% of the lots contained phages demonstrable with the C-3000 strain ofEscherichia coli. Only one lot of the serum was found to be free from bacteria, phages, and endotoxin by the tests used.  相似文献   
25.
26.
Dryland ecosystems may be especially vulnerable to expected 21st century increases in temperature and aridity because they are tightly controlled by moisture availability. However, climate impact assessments in drylands are difficult because ecological dynamics are dictated by drought conditions that are difficult to define and complex to estimate from climate conditions alone. In addition, precipitation projections vary substantially among climate models, enhancing variation in overall trajectories for aridity. Here, we constrain this uncertainty by utilizing an ecosystem water balance model to quantify drought conditions with recognized ecological importance, and by identifying changes in ecological drought conditions that are robust among climate models, defined here as when >90% of models agree in the direction of change. Despite limited evidence for robust changes in precipitation, changes in ecological drought are robust over large portions of drylands in the United States and Canada. Our results suggest strong regional differences in long‐term drought trajectories, epitomized by chronic drought increases in southern areas, notably the Upper Gila Mountains and South‐Central Semi‐arid Prairies, and decreases in the north, particularly portions of the Temperate and West‐Central Semi‐arid Prairies. However, we also found that exposure to hot‐dry stress is increasing faster than mean annual temperature over most of these drylands, and those increases are greatest in northern areas. Robust shifts in seasonal drought are most apparent during the cool season; when soil water availability is projected to increase in northern regions and decrease in southern regions. The implications of these robust drought trajectories for ecosystems will vary geographically, and these results provide useful insights about the impact of climate change on these dryland ecosystems. More broadly, this approach of identifying robust changes in ecological drought may be useful for other assessments of climate impacts in drylands and provide a more rigorous foundation for making long‐term strategic resource management decisions.  相似文献   
27.
The green alga Chlamydomonas reinhardtii does not synthesize high‐value ketocarotenoids like canthaxanthin and astaxanthin; however, a β‐carotene ketolase (CrBKT) can be found in its genome. CrBKT is poorly expressed, contains a long C‐terminal extension not found in homologues and likely represents a pseudogene in this alga. Here, we used synthetic redesign of this gene to enable its constitutive overexpression from the nuclear genome of C. reinhardtii. Overexpression of the optimized CrBKT extended native carotenoid biosynthesis to generate ketocarotenoids in the algal host causing noticeable changes the green algal colour to reddish‐brown. We found that up to 50% of native carotenoids could be converted into astaxanthin and more than 70% into other ketocarotenoids by robust CrBKT overexpression. Modification of the carotenoid metabolism did not impair growth or biomass productivity of C. reinhardtii, even at high light intensities. Under different growth conditions, the best performing CrBKT overexpression strain was found to reach ketocarotenoid productivities up to 4.3 mg/L/day. Astaxanthin productivity in engineered C. reinhardtii shown here might be competitive with that reported for Haematococcus lacustris (formerly pluvialis) which is currently the main organism cultivated for industrial astaxanthin production. In addition, the extractability and bio‐accessibility of these pigments were much higher in cell wall‐deficient C. reinhardtii than the resting cysts of H. lacustris. Engineered C. reinhardtii strains could thus be a promising alternative to natural astaxanthin producing algal strains and may open the possibility of other tailor‐made pigments from this host.  相似文献   
28.
The role of coastal mangrove wetlands in sequestering atmospheric carbon dioxide (CO2) and mitigating climate change has received increasing attention in recent years. While recent studies have shown that methane (CH4) emissions can potentially offset the carbon burial rates in low‐salinity coastal wetlands, there is hitherto a paucity of direct and year‐round measurements of ecosystem‐scale CH4 flux (FCH4) from mangrove ecosystems. In this study, we examined the temporal variations and biophysical drivers of ecosystem‐scale FCH4 in a subtropical estuarine mangrove wetland based on 3 years of eddy covariance measurements. Our results showed that daily mangrove FCH4 reached a peak of over 0.1 g CH4‐C m?2 day?1 during the summertime owing to a combination of high temperature and low salinity, while the wintertime FCH4 was negligible. In this mangrove, the mean annual CH4 emission was 11.7 ± 0.4 g CH4‐C m–2 year?1 while the annual net ecosystem CO2 exchange ranged between ?891 and ?690 g CO2‐C m?2 year?1, indicating a net cooling effect on climate over decadal to centurial timescales. Meanwhile, we showed that mangrove FCH4 could offset the negative radiative forcing caused by CO2 uptake by 52% and 24% over a time horizon of 20 and 100 years, respectively, based on the corresponding sustained‐flux global warming potentials. Moreover, we found that 87% and 69% of the total variance of daily FCH4 could be explained by the random forest machine learning algorithm and traditional linear regression model, respectively, with soil temperature and salinity being the most dominant controls. This study was the first of its kind to characterize ecosystem‐scale FCH4 in a mangrove wetland with long‐term eddy covariance measurements. Our findings implied that future environmental changes such as climate warming and increasing river discharge might increase CH4 emissions and hence reduce the net radiative cooling effect of estuarine mangrove forests.  相似文献   
29.
Vegetation in tropical Asia is highly diverse due to large environmental gradients and heterogeneity of landscapes. This biodiversity is threatened by intense land use and climate change. However, despite the rich biodiversity and the dense human population, tropical Asia is often underrepresented in global biodiversity assessments. Understanding how climate change influences the remaining areas of natural vegetation is therefore highly important for conservation planning. Here, we used the adaptive Dynamic Global Vegetation Model version 2 (aDGVM2) to simulate impacts of climate change and elevated CO2 on vegetation formations in tropical Asia for an ensemble of climate change scenarios. We used climate forcing from five different climate models for representative concentration pathways RCP4.5 and RCP8.5. We found that vegetation in tropical Asia will remain a carbon sink until 2099, and that vegetation biomass increases of up to 28% by 2099 are associated with transitions from small to tall woody vegetation and from deciduous to evergreen vegetation. Patterns of phenology were less responsive to climate change and elevated CO2 than biomes and biomass, indicating that the selection of variables and methods used to detect vegetation changes is crucial. Model simulations revealed substantial variation within the ensemble, both in biomass increases and in distributions of different biome types. Our results have important implications for management policy, because they suggest that large ensembles of climate models and scenarios are required to assess a wide range of potential future trajectories of vegetation change and to develop robust management plans. Furthermore, our results highlight open ecosystems with low tree cover as most threatened by climate change, indicating potential conflicts of interest between biodiversity conservation in open ecosystems and active afforestation to enhance carbon sequestration.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号