首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   20篇
  国内免费   2篇
  2023年   3篇
  2022年   6篇
  2021年   23篇
  2020年   15篇
  2019年   5篇
  2018年   9篇
  2017年   10篇
  2016年   16篇
  2015年   19篇
  2014年   17篇
  2013年   16篇
  2012年   21篇
  2011年   19篇
  2010年   14篇
  2009年   12篇
  2008年   18篇
  2007年   12篇
  2006年   13篇
  2005年   10篇
  2004年   13篇
  2003年   6篇
  2002年   9篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   7篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
  1934年   1篇
  1932年   1篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
141.
ABSTRACT

When trophoblasts migrate and invade in vivo, they do so by interacting with a range of other cell types, extracellular matrix proteins, chemotactic factors and physical forces such as fluid shear stress. These factors combine to influence overall trophoblast migration and invasion into the decidua, which in turn determines the success of spiral artery remodelling, and pregnancy itself. Our understanding of these important but complex processes is limited by the simplified conditions in which we often study cell migration in vitro, and many discrepancies are observed between different in vitro models in the literature. On top of these experimental considerations, the migration of individual trophoblasts can vary widely. While time-lapse microscopy provides a wealth of information on trophoblast migration, manual tracking of individual cell migration is a time consuming task that ultimately restricts the numbers of cells quantified, and thus the ability to extract meaningful information from the data. However, the development of automated imaging algorithms is likely to aid our ability to accurately interpret trophoblast migration in vitro, and better allow us to relate these observations to in vivo scenarios. This commentary discusses the advantages and disadvantages of techniques commonly used to quantify trophoblast migration and invasion, both from a cell biology and a mathematical perspective, and examines how such techniques could be improved to help us relate trophoblast migration more accurately to in vivo function in the future.  相似文献   
142.
A series of 8,9-disubstituted adenines (4, 5, 8), 6-substituted aminopurines (10–13) and 9-(p-fluorobenzyl/cyclopentyl)-6-substituted aminopurines (16, 17, 19–30) have been prepared and the antimicrobial activities of these compounds against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA, standard and clinical isolate), Bacillus subtilis, Escherichia coli and Candida albicans were evaluated. 6-[(N-phenylaminoethyl)amino]-9H-purine (12) which has no substitution at N-9 position and 9-cyclopentyl-6-[(4-fluorobenzyl)amino]-9H-purine (24) exhibited excellent activity against C. albicans with MIC 3.12 μg/mL. These compounds displayed better antifungal activity than that of standard oxiconazole. Furthermore, compound 22 carrying 4-chlorobenzylamino group at the 6-position of the purine moiety exhibited comparable antibacterial activity with that of the standard ciprofloxacin against both of the drug-resistant bacteria (MRSA, standard and clinical isolate).  相似文献   
143.
The use of cellulose 2,3-carbonate as a matrix for the insolubilisation of biologically active molecules has been extended to the preparation of insoluble antigen and antibody (immunosorbents). Both human pituitary follicle-stimulating hormone (FSH) and its homologous antibody have been covalently attached to cellulose carbonate by the nucleophilic attack of their primary amino groups on the cyclic carbonate groups. Antibody to FSH retains its immunological reactivity on insolubilisation, and is therefore suitable for use in the solid phase radioimmunoassay of unknown amounts of FSH by competitive binding of radioactively labelled and unlabelled FSH. Acceptable inhibition curves can be obtained, and the low, non-specific absorption characteristics have advantages over other systems. FSH also retains immunological reactivity on insolubilisation, and the derivative holds potential for the radioimmunoassay of FSH as it can be layered immunologically with anti-FSH and then FSH itself.  相似文献   
144.
Semaphorin 3A (Sema3A) axon repellant serves multiple developmental functions. Sema3A mRNAs are expressed in epithelial and mesenchymal components of the developing incisor in a dynamic manner. Here, we investigate the functions of Sema3A during development of incisors using Sema3A-deficient mice. We analyze histomorphogenesis and innervation of mandibular incisors using immunohistochemistry as well as computed tomography and thick tissue confocal imaging. Whereas no apparent disturbances in histomorphogenesis or hard tissue formation of Sema3A ?/? incisors were observed, nerve fibers were prematurely seen in the presumptive dental mesenchyme of the bud stage Sema3A ?/? tooth germ. Later, nerves were ectopically present in the Sema3A ?/? dental papilla mesenchyme during the cap and bell stages, whereas in the Sema3A +/+ mice the first nerve fibers were seen in the pulp after the onset of dental hard tissue formation. However, no apparent topographic differences in innervation pattern or nerve fasciculation were seen inside the pulp between postnatal and adult Sema3A +/+ or Sema3A ?/? incisors. In contrast, an abnormally large number of nerves and arborizations were observed in the Sema3A ?/? developing dental follicle target field and periodontium and, unlike in the wild-type mice, nerve fibers were abundant in the labial periodontium. Of note, the observed defects appeared to be mostly corrected in the adult incisors. The expressions of Ngf and Gdnf neurotrophins and their receptors were not altered in the Sema3A ?/? postnatal incisor or trigeminal ganglion, respectively. Thus, Sema3A is an essential, locally produced chemorepellant, which by creating mesenchymal exclusion areas, regulates the timing and patterning of the dental nerves during the development of incisor tooth germ.  相似文献   
145.
An elevated level of tumor necrosis factor (TNF)-α is implicated in several cardiovascular diseases including heart failure. Numerous reports have demonstrated that TNF-α activates nuclear factor (NF)-kappaB, resulting in the upregulation of several genes that regulate inflammation, proliferation, and apoptosis of cardiomyocytes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of reactive oxygen species (ROS), is also activated by TNF-α and plays a crucial role in redox-sensitive signaling pathways. The present study investigated whether NADPH oxidase mediates TNF-α-induced NF-kappaB activation and NF-kappaB-mediated gene expression. Human cardiomyocytes were treated with recombinant TNF-α with or without pretreatment with diphenyleneiodonium (DPI) and apocynin, inhibitors of NADPH oxidase. TNF-α-induced ROS production was measured using 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate assay. TNF-α-induced NF-kappaB activation was also examined using immunoblot; NF-kappaB binding to its binding motif was determined using a Cignal reporter luciferase assay and an electrophoretic mobility shift assay. TNF-α-induced upregulation of interleukin (IL)-1β and vascular cell adhesion molecule (VCAM)-1 was investigated using real-time PCR and immunoblot. TNF-α-induced ROS production in cardiomyocytes was mediated by NADPH oxidase. Phosphorylation of IKK-α/β and p65, degradation of IkappaBα, binding of NF-kappaB to its binding motif, and upregulation of IL-1β and VCAM-1 induced by TNF-α were significantly attenuated by treatment with DPI and apocynin. Collectively, these findings demonstrate that NADPH oxidase plays a role in regulation of TNF-α-induced NF-kappaB activation and upregulation of proinflammatory cytokines, IL-1β and VCAM-1, in human cardiomyocytes.  相似文献   
146.
Allogeneic mesenchymal stem cells (MSCs) are regarded as promising seed cells for engineering cartilage. However, few researches have covered the immune properties of seeded MSCs. Collagen has been considered as good scaffold, whether it has inherent chondrogenic inducibility for MSCs is still in debate. In this study, engineering grafts are constructed by neonatal rabbit MSCs and collagen Type I hydrogel. After periods of culture, the appearance of chondroid tissue in the grafts and the cartilage matrix‐specific genes expressions of seeded cells prove the inducibility of collagen hydrogel, even if the growth factors are absence. With the differentiation, immunological properties of MSCs are changing. The expressions of main histocompatibility complex (MHC) molecules increase and the ability to inhibit the proliferation of activated lymphocytes may be declined. But to a large extent, it keeps the low stimulating to allogeneic lymphocytes and the small absolute value of MHCs. The changes are adverse for avoiding inflammation and rejection. Therefore, suitable scaffold and engineering strategies should be selected. For the grafts based on Collagen I hydrogel and MSCs, a longer culture period might not be necessary. To maintain the immune regulation, a higher initial MSCs density in engineering grafts may be more meaningful. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
147.
Aims: Penicillium echinulatum is effective for bioconversion processes. However, nothing is known about the molecular biology of its cellulolytic system. We describe for the first time the isolation, cloning and expression of a P. echinulatum cellulase cDNA (Pe‐egl1) encoding a putative endoglucanase. Methods and Results: Pe‐egl1 cDNA was identified from random sequencing of a P. echinulatum cDNA library. The deduced EGL1 protein possibly belongs to the glycosyl hydrolase family 5A, with 387 amino acid residues and strong similarity with other fungal endoglucanases. The cDNA was heterologously expressed in Pichia pastoris. The recombinant EGL1 secreted by a Pic. pastoris recombinant strain revealed the characteristics of particular interest: an optimal activity over a broad pH range (5·0–9·0), and an optimal temperature of 60°C. The recombinant EGL1 also showed high thermostability (84% of residual activity after 1 h of pre‐incubation at 70°C). Calcium exerted a strong stimulatory effect over EGL1 activity. Conclusions: Altogether, these results point to the potential application of this P. echinulatum endoglucanase in cellulose processing industries, particularly the textile one because of its biochemical properties. Significance and Impact of the Study: The characterization and heterologous expression of the first Pechinulatun cDNA inaugurates the exploitation of this potential industrial micro‐organism.  相似文献   
148.
LETEG is a method developed and used for the separation and purification of proteins employing a single-step ligand (aptamers) evolution in which aptamers are eluted with an increasing temperature gradient. Using recombinant human growth hormone (rhGH) as the test purification target, and after avoiding cross reactions of aptamers with Bacillus subtilis extracellular proteins by negative SELEX, the effects of time and pH on aptamer binding to rhGH were investigated. The highest binding efficiency of aptamers on rhGH-immobilized microparticles was obtained at pH 7.0. The aptamers that interacted with rhGH were eluted by a multi-stage step-up temperature gradient in ΔT = 10 °C increments within the range T = 55–95 °C; and the strongest affinity binding was disrupted at T = 85 °C where CApt = 0.16 μM was eluted. The equilibrium binding data obtained was described by a Langmuir-type isotherm; where the affinity constant was KD = 218 nM rhGH. RhGH was separated from the fermentation broth with 99.8% purity, indicating that the method developed is properly applicable even for an anionic protein.  相似文献   
149.
Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (δ18O) as high as 4‰ were observed for water vapour (δ18Ovp) above and within an old‐growth coniferous forest in the Pacific Northwest region of the United States. Values of δ18Ovp decreased in the morning, reached a minimum at midday, and recovered to early‐morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days. A mass balance budget was derived and assessed for the 18O of canopy water vapour over a 2‐d period by considering the 18O‐isoflux of canopy transpiration, soil evaporation and the air entering the canopy column. The budget was used to address two questions: (1) do δ18O values of canopy water vapour reflect the biospheric influence, or are such signals swamped by atmospheric mixing? and (2) what mechanisms drive temporal variations of δ18Ovp? Model calculations show that the entry of air into the canopy column resulted in an isotopically depleted 18O‐isoflux in the morning of day 1, causing values of δ18Ovp to decrease. An isotopically enriched 18O‐isoflux resulting from transpiration then offset this decreased δ18Ovp later during the day. Contributions of 18O‐isoflux from soil evaporation were relatively small on day 1 but were more significant on day 2, despite the small H216O fluxes. From measurements of leaf water volume and sapflux, we determined the turnover time of leaf water in the needles of Douglas‐fir trees as ≈ 11 h at midday. Such an extended turnover time suggests that transpiration may not have occurred at the commonly assumed isotopic steady state. We tested a non‐steady state model for predicting δ18O of leaf water. Our model calculations show that assuming isotopic steady state increased isoflux of transpiration. The impact of this increase on the modelled δ 18Ovp was clearly detectable, suggesting the importance of considering isotopic non‐steady state of transpiration in studies of forest 18O water balance.  相似文献   
150.
Radiation enteritis occurs as a response to abdominal radiation, which can cause mucosal damage in the gastrointestinal mucosal epithelium. The small intestine is one of the most radiosensitive organs in the abdomen. The present study was undertaken to investigate the effect of octreotide (OCT) administration on heme oxygenase-1 (HO-1) expression of the radiation enteritis model. Rats received 50 mg/kg/day OCT for 4 days before irradiation and continued for 3 days after irradiation. Intestinal myeloperoxidase (MPO) activities, malondialdehyde (MDA) levels are indicators of oxidative damage while caspase-3 activities reveal apoptosis degree of the small intestine. At histological examination, the terminal ileum tissue was analyzed for morphological changes. Irradiation significantly increased the intestinal MPO and caspase-3 activities, MDA levels and HO-1 expression in comparison to sham control group. OCT treatment was associated with increased HO-1 expression and caspase-3 activity, decreased MPO activity and MDA levels. Histological examination revealed that the intestinal mucosal structure was preserved in the OCT treated group. OCT appears to have protective effects against radiation-induced intestinal damage. This protective effect is, in part, mediated by modification of the inflammatory response and the induction of HO-1 expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号