首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4358篇
  免费   284篇
  国内免费   6篇
  4648篇
  2024年   4篇
  2023年   19篇
  2022年   53篇
  2021年   91篇
  2020年   48篇
  2019年   80篇
  2018年   113篇
  2017年   104篇
  2016年   168篇
  2015年   212篇
  2014年   273篇
  2013年   315篇
  2012年   384篇
  2011年   392篇
  2010年   209篇
  2009年   208篇
  2008年   306篇
  2007年   252篇
  2006年   191篇
  2005年   187篇
  2004年   181篇
  2003年   185篇
  2002年   139篇
  2001年   125篇
  2000年   107篇
  1999年   76篇
  1998年   34篇
  1997年   20篇
  1996年   31篇
  1995年   17篇
  1994年   13篇
  1993年   12篇
  1992年   26篇
  1991年   25篇
  1990年   10篇
  1989年   14篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1979年   1篇
  1975年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有4648条查询结果,搜索用时 15 毫秒
121.
The increasing problem of antibiotic resistance among pathogenic bacteria requires development of new antimicrobial agents. For the purpose of this study, a cDNA encoding hinnavin II‐α‐melanocyte stimulating hormone (hin/MSH) hybrid was chemically synthesized, annealed, and then cloned into transfer vector pBacPAK 9 for expression in Sf21 insect cells. Recombinant hin/MSH (rhin/MSH) hybrid was efficiently produced in baculovirus expression vector system (BEVS) as a hybrid peptide. The antibacterial activity of the rhin/MSH hybrid was compared to that of the recombinant hinnavin II (rhin), using inhibition zone and overlay assay. This new recombinant hybrid peptide may serve as an attractive candidate for powerful novel class of antimicrobial pharmaceuticals.  相似文献   
122.
We have characterized cis-acting elements involved in light regulation of the nuclear gene (GapA) encoding the A subunit of chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in Arabidopsis thaliana. Our results show that a 1.1-kb promoter fragment of the GapA gene is sufficient to confer light inducibility and organ specificity in transgenic Nicotiana tabacum (tobacco) plants, using the beta-glucuronidase gene of Escherichia coli as the reporter gene. Deletion analysis indicates that the -359 to -110 bp region of the GapA gene is necessary for light responsiveness. Within this region there are three copies of a decamer repeat (termed the Gap box) having the consensus sequence 5'-CAAATGAA(A/G)A-3', which has not been characterized in the promoter regions of other light-regulated genes. A deletion (to -247) producing loss of one copy of these elements from the GapA promoter reduces light induction by two- to threefold compared with a promoter deletion (to -359) with all three Gap boxes present, while deletion of all three Gap boxes (to -110) abolishes light induction completely. Gel mobility shift experiments using tobacco nuclei as the source of nuclear proteins show that GapA promoter fragments that contain these repeats bind strongly to a factor in the nuclear extract and that binding can be abolished by synthetic competitors consisting only of a monomer or dimer of the Gap box. Furthermore, a trimer, dimer, and monomer of the Gap box show binding activity and, like the authentic GapA promoter-derived probes, show binding activities that are correlated with Gap box copy number. These results strongly suggest that these repeats play important roles in light regulation of the GapA gene of A. thaliana.  相似文献   
123.
Aqualysin I is an alkaline serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extreme thermophile [Matsuzawa, H., Hamaoki, M. & Ohta, T. (1983) Agric. Biol. Chem. 47, 25-28]. The gene encoding aqualysin I was cloned into Escherichia coli using synthetic oligodeoxyribonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of aqualysin I, deduced from the nucleotide sequence, agreed with the NH2-terminal sequence previously reported and the determined amino acid sequences, including the COOH-terminal sequence, of the tryptic peptides derived from aqualysin I. Aqualysin I comprised 281 amino acid residues and its molecular mass was determined to be 28,350. On alignment of the whole amino acid sequence, aqualysin I showed high sequence homology with the subtilisin-type serine proteases, and 43% identity with proteinase K, 37-39% with subtilisins and 34% with thermitase. Extremely high sequence identity was observed in the regions containing the active-site residues, corresponding to Asp32, His64 and Ser221 of subtilisin BPN'. The nucleotide sequence of the cloned DNA (1105 nucleotides) revealed that it contains the entire gene encoding aqualysin I and one open reading frame without a translational stop codon. Therefore, aqualysin I was considered to be produced as a large precursor, which contains a NH2-terminal portion, the protease and a COOH-terminal portion. The G + C content of the coding region for aqualysin I was 64.6%, which is lower than those of other Thermus genes (68-74%). The codon usage in the aqualysin I gene was rather random in comparison with that in other Thermus genes.  相似文献   
124.
This study presents a systematic modeling approach for examining the efficiency of the MEOR process based on in situ selective plugging by bacterial biopolymer production and optimization of the nutrient injection strategy to yield the maximum oil recovery. This study focuses on modeling in situ selective plugging by the bacterial biopolymer dextran that is generated by Leuconostoc mesenteroides. Bacterial growth and dextran generation were described by a stoichiometric equation and kinetic reactions using batch model simulation. Based on the parameters for permeability reduction obtained from the sandpack model, the MEOR process was implemented in a pilot-scale system that included a highly permeable thief zone in a low-permeability reservoir. The base MEOR design yielded a 61.5% improvement of the recovery factor compared to that obtained with waterflooding. The parametric simulations revealed that the recovery efficiency was influenced by the amount of dextran, as well as the distribution of dextran, and thus, the injection strategy is critical for controlling the dextran distribution. By incorporating the results from the sensitivity analysis and optimization to determine the optimal design parameters, a 36.7% improvement of the oil recovery was achieved with the optimized MEOR process in comparison with the base case.  相似文献   
125.
We have developed a polymerase chain reaction (PCR)-based assay that could effectively reduce the time period required to screen and select the cold tolerance gene of rice seedlings under field conditions. The two specific random amplified polymorphic DNA (RAPD) fragments for the assay were identified on the basis of quantitative trait loci (QTL) analysis which were found to be tightly linked to cold sensitivity. The two RAPD fragments, OPT8(600) in the cold sensitivity rice cultivar 'Dular (indica)' and OPU20(1200) in the resistance rice cultivar 'Toyohatamochi (japonica)', were identified after screening 11 RAPD fragments using 2 random primers on the genomic DNAs of 'Dular' and 'Toyohatamochi'. These primers, when used in a multiplexed PCR, specifically amplified a 0.6 kb and a 1.2 kb fragment in the sensitive and resistant rice cultivars, respectively. When this assay was performed on the genomic DNAs of 16 japonica, 3 Tongil (indica/ japonica), and 2 indica rice cultivars, the primers amplified a 0.6 kb fragment in all of the cold sensitivity rice cultivars or 1.2 kb fragment in all of the resistance ones. These markers can be of potential use in the marker-assisted selection (MAS) for cold tolerance in rice seedling. As screening for resistance can now be conducted independent of the availability of low temperature, the breeding of cold tolerance cultivars can be hastened.  相似文献   
126.
Semitransparent solar cells have attracted significant attention for practical applications, such as windows in buildings and automobiles. Here, semitransparent, highly efficient, 1D nanostructured perovskite solar cells are demonstrated employing anodized aluminum oxide (AAO) as a scaffold layer. The parallel nanopillars in the perovskite layer enable construction of haze‐free semitransparent devices without any hysteresis behavior. By controlling the pore size in the AAO, the volume occupied by the perovskite layer can be precisely varied, and the color neutrality of the resulting devices can be achieved. With the incorporation of a transparent cathodic electrode (indium tin oxide) with a buffer layer (MoOx), a highly efficient semitransparent nanopillared perovskite solar cell is achievable with a power‐conversion efficiency of 9.6% (7.5%) and a whole device average visible light transmittance of 33.4% (41.7%). To determine the role of the scaffold layer in improving the photoelectrical properties of the cell, impedance spectroscopy analyses are performed, revealing that the AAO‐structured perovskite layer suppresses internal ion diffusion and enables critical improvements in long‐term stability under continuous illumination.  相似文献   
127.
128.
Microalgae have been proposed as eco-friendly feedstocks for biodiesel production, because they accumulate large amounts of lipids and increase their biomass through photosynthesis. However, the photosynthetic efficiency of microalgae is too low for this strategy to be economically feasible. In an effort to overcome this issue, random mutants with reduced chlorophyll antenna size were generated by ethyl methanesulfonate (EMS)-mediated mutagenesis of Chlorella vulgaris. The antenna size mutant, herein designated E5, exhibited 56.5 and 75.8 % decreases in chlorophyll a and b contents, respectively, with significant reductions in the expression levels of peripheral light-harvesting antenna proteins in photosystem II. The saturated photosynthetic activity and electron transport rate of the E5 mutant were significantly higher and also showed reduced non-photochemical quenching (NPQ), compared to those of the wild type. Consequentially, the E5 mutant cultures achieved 44.5 % improvement in biomass productivity under high light (200 μmol photons m?2 s?1). These results suggest that improving the photosynthetic efficiency of microalgae could greatly enhance their biomass production, and such mutant strains can be applicable for large-scale outdoor cultivation which is typically exposed to high light intensity.  相似文献   
129.

Background

Human embryonic stem cells (hESCs) are a promising and powerful source of cells for applications in regenerative medicine, tissue engineering, cell-based therapies, and drug discovery. Many researchers have employed conventional culture techniques using feeder cells to expand hESCs in significant numbers, although feeder-free culture techniques have recently been developed. In regard to stem cell expansion, gap junctional intercellular communication (GJIC) is thought to play an important role in hESC survival and differentiation. Indeed, it has been reported that hESC-hESC communication through connexin 43 (Cx43, one of the major gap junctional proteins) is crucial for the maintenance of hESC stemness during expansion. However, the role of GJIC between hESCs and feeder cells is unclear and has not yet been reported.

Methodology/Principal Findings

This study therefore examined whether a direct Cx43-mediated interaction between hESCs and human adipose-derived stem cells (hASCs) influences the maintenance of hESC stemness. Over 10 passages, hESCs cultured on a layer of Cx43-downregulated hASC feeder cells showed normal morphology, proliferation (colony growth), and stemness, as assessed by alkaline phosphatase (AP), OCT4 (POU5F1-Human gene Nomenclature Database), SOX2, and NANOG expression.

Conclusions/Significance

These results demonstrate that Cx43-mediated GJIC between hESCs and hASC feeder cells is not an important factor for the conservation of hESC stemness and expansion.  相似文献   
130.
Although the hepatitis B virus X protein (HBx) is thought to play a causative role in the development of hepatocellular carcinoma, it is not yet known whether interfering with HBx function may affect the cellular transformation of HBx-expressing tumor cells. To address this question, we adopted an intracellular antibody fragment expression approach to block the function of HBx. Expression of a single-chain variable fragment (scFv) specific to HBx (designated as H7scFv) inhibited HBx-dependent cellular transactivation. Furthermore, H7scFv suppressed the growth of HBx-expressing tumor cells in both soft agar and nude mice. The suppressive effect of H7scFv on tumorigenicity appeared not to be mediated by inhibition of HBx-induced growth stimulation since the growth rate of these cells was not affected significantly by H7scFv expression. In conclusion, these data suggest that the HBx-dependent transformed phenotype is reversible and that HBx may be a good molecular target for the treatment of HBV-related tumors.This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health& Welfare, Republic of Korea (03-PJ1-PG3-20200–0023)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号