首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5670篇
  免费   403篇
  国内免费   6篇
  2024年   5篇
  2023年   17篇
  2022年   48篇
  2021年   124篇
  2020年   83篇
  2019年   108篇
  2018年   152篇
  2017年   139篇
  2016年   219篇
  2015年   302篇
  2014年   358篇
  2013年   409篇
  2012年   493篇
  2011年   524篇
  2010年   272篇
  2009年   277篇
  2008年   389篇
  2007年   344篇
  2006年   265篇
  2005年   251篇
  2004年   249篇
  2003年   261篇
  2002年   186篇
  2001年   136篇
  2000年   114篇
  1999年   88篇
  1998年   39篇
  1997年   23篇
  1996年   33篇
  1995年   25篇
  1994年   15篇
  1993年   15篇
  1992年   26篇
  1991年   27篇
  1990年   15篇
  1989年   14篇
  1988年   8篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1975年   2篇
  1973年   1篇
  1972年   3篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1956年   1篇
排序方式: 共有6079条查询结果,搜索用时 250 毫秒
991.
This study aimed to investigate the effects of obovatol isolated from Magnolia obovata on pentobarbital-induced sleeping behaviors and to determine whether these effects were mediated by GABAA receptors/chloride channel activation, using a western blot technique and Cl? sensitive fluorescence probe. GABAA receptors subunits expression and chloride influx were investigated in cultured cerebellar granule cells. Obovatol (0.05, 0.1, and 0.2 mg/kg) prolonged the sleeping time induced by pentobarbital (42 mg/kg). In addition, obovatol (20 and 50 μM) significantly increased Cl? influx in the primary cultured cerebellar granule cells. Moreover, obovatol increased the expression of GABAA receptor α-, β-, and γ-subunits. However, it had no effect on the abundance of the expression of glutamic acid decarboxylase (GAD), suggesting that obovatol might not activate GAD. These results suggest that obovatol potentiates pentobarbital-induced sleeping time through the GABAA receptors/chloride channel activation.  相似文献   
992.
993.
994.
Systemic resistance is induced by necrotizing pathogenic microbes and non-pathogenic rhizobacteria and confers protection against a broad range of pathogens. Here we show that Arabidopsis GDSL LIPASE-LIKE 1 (GLIP1) plays an important role in plant immunity, eliciting both local and systemic resistance in plants. GLIP1 functions independently of salicylic acid but requires ethylene signaling. Enhancement of GLIP1 expression in plants increases resistance to pathogens including Alternaria brassicicola , Erwinia carotovora and Pseudomonas syringae , and limits their growth at the infection site. Furthermore, local treatment with GLIP1 proteins is sufficient for the activation of systemic resistance, inducing both resistance gene expression and pathogen resistance in systemic leaves. The PDF1.2 -inducing activity accumulates in petiole exudates in a GLIP1-dependent manner and is fractionated in the size range of less than 10 kDa as determined by size exclusion chromatography. Our results demonstrate that GLIP1-elicited systemic resistance is dependent on ethylene signaling and provide evidence that GLIP1 may mediate the production of a systemic signaling molecule(s).  相似文献   
995.
A series of (2-aryl-5-methylimidazol-4-ylcarbonyl)guanidines and (2-aryl-5-methyloxazol-4-ylcarbonyl)guanidines were synthesized and evaluated as NHE-1 inhibitors. The structure–activity relationships well matched those of furan derivatives, which were previously investigated. The (2,5-disubstituted)phenyl compounds showed better activities than the other analogues in both imidazole and oxazole compounds. Especially, 2-(2,5-dichlorophenyl)imidazole 52, and 2-(2-methoxy-5-chlorophenyl)imidazole 54 compounds exhibited potent cardioprotective efficacy both in vitro and in vivo as well as high NHE-1 inhibitory activities.  相似文献   
996.
In order to establish anti-inflammatory potential of biflavonoids, 17 biflavone derivatives having a 6-O-7″ linkage were synthesized and their effects on cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were evaluated. The basic molecule (6-O-7″ biflavone) potently inhibited COX-2-mediated PGE2 production (IC50: < 2 μM), being less active on iNOS-mediated NO production (IC50: > 50 μM) from lipopolysaccharide-treated RAW 264.7 cells, a mouse macrophage cell line. Generally, the hydroxyl/methoxyl substitution(s) on the basic biflavone (6-O-7″) reduced the inhibitory activity of PGE2 production, while the effects on NO production were varied. It is suggested that the basic biflavone (6-O-7″) may have a potential for new anti-inflammatory agent.  相似文献   
997.
Benz[b]oxepines 4ag and 12-oxobenzo[c]phenanthridines 5ad were designed and synthesized as constrained forms of 3-arylisoquinolines through an intramolecular radical cyclization reaction. Radical cyclization of O-vinyl compounds preferentially led to the 7-endo-trig cyclization pathway to the benz[b]oxepines and 12-oxobenzo[c]phenanthridines through 6-exo-trig path as minor products. Among the synthesized compounds, benz[b]oxepine derivative 4e exhibited potent in vitro cytotoxicity against three different tumor cell lines, as well as topoisomerase 1 inhibitory activity. A Surflex–Dock docking study was performed to clarify the topoisomerase 1 activity of 4e.  相似文献   
998.
Simple sequence repeats (SSR) is one of the most suitable markers for variety identification as it has great discrimination power for varieties with limited genetic variation. Genetic characterization of commercial tomato varieties was investigated using 33 SSR markers and 22 morphological traits. Thirty three SSR primer pairs were screened for 63 tomato varieties. A total of 132 polymorphic amplified fragments were obtained by using 33 SSR markers. The average polymorphism information content (PIC) was 0.628 ranging from 0.210 to 0.880. One hundred thirty two SSR loci were used to calculate Jaccard's distance coefficients for UPGMA cluster analysis. A clustering group of varieties, based on the results of SSR analysis, were categorized into cherry and classic fruit type varieties. Almost all of the varieties were discriminated by SSR marker genotypes. The relationship between morphological and molecular data for 33 varieties out of 63 varieties was analyzed using Mantel matrix correspondence test. The correlation value between two methods was 0.644. However, SSR based dendrogram topology showed some similar form with morphological traits at the two main groups. Therefore, these markers may be used wide range of practical application in variety identification and pre-screening for distinctiveness test of tomato varieties.  相似文献   
999.
Jack mackerel (Trachurus japonicus, Carangidae) are a commercially important fisheries resource in Korea. To understand patterns of genetic variation for conservation and management efforts, we developed microsatellite DNA markers fromT. japonicus. We report the isolation and characterization of eleven microsatellite loci isolated using an enrichment method based on magnetic/biotin capture of microsatellite sequences from a size-selected genomic library. To characterize each locus, 50 individuals from a naturalT. japonicus population in southern Korea were genotyped. All loci except one, KTJ38, were polymorphic with an average of 14 alleles per locus (range 6–23). The mean observed and expected heterozygosities were 0.70 (range 0.46–0.92) and 0.81 (range 0.49–1.00), respectively. Significant deviation from Hardy-Weinberg equilibrium was observed at three loci, KTj3, KTJ20 and KTJ28. Such high variability indicates that these microsatellites are useful markers for high-resolution analysis for population gemetic studies.  相似文献   
1000.
Plants protect themselves from excess absorbed light energy through thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). The major component of NPQ, qE, is induced by high transthylakoid ΔpH in excess light and depends on the xanthophyll cycle, in which violaxanthin and antheraxanthin are deepoxidized to form zeaxanthin. To investigate the xanthophyll dependence of qE, we identified suppressor of zeaxanthin-less1 (szl1) as a suppressor of the Arabidopsis thaliana npq1 mutant, which lacks zeaxanthin. szl1 npq1 plants have a partially restored qE but lack zeaxanthin and have low levels of violaxanthin, antheraxanthin, and neoxanthin. However, they accumulate more lutein and α-carotene than the wild type. szl1 contains a point mutation in the lycopene β-cyclase (LCYB) gene. Based on the pigment analysis, LCYB appears to be the major lycopene β-cyclase and is not involved in neoxanthin synthesis. The Lhcb4 (CP29) and Lhcb5 (CP26) protein levels are reduced by 50% in szl1 npq1 relative to the wild type, whereas other Lhcb proteins are present at wild-type levels. Analysis of carotenoid radical cation formation and leaf absorbance changes strongly suggest that the higher amount of lutein substitutes for zeaxanthin in qE, implying a direct role in qE, as well as a mechanism that is weakly sensitive to carotenoid structural properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号