全文获取类型
收费全文 | 4364篇 |
免费 | 286篇 |
国内免费 | 6篇 |
专业分类
4656篇 |
出版年
2024年 | 4篇 |
2023年 | 19篇 |
2022年 | 53篇 |
2021年 | 91篇 |
2020年 | 48篇 |
2019年 | 80篇 |
2018年 | 113篇 |
2017年 | 104篇 |
2016年 | 169篇 |
2015年 | 213篇 |
2014年 | 273篇 |
2013年 | 315篇 |
2012年 | 384篇 |
2011年 | 392篇 |
2010年 | 210篇 |
2009年 | 208篇 |
2008年 | 306篇 |
2007年 | 252篇 |
2006年 | 191篇 |
2005年 | 187篇 |
2004年 | 181篇 |
2003年 | 185篇 |
2002年 | 139篇 |
2001年 | 125篇 |
2000年 | 108篇 |
1999年 | 76篇 |
1998年 | 36篇 |
1997年 | 20篇 |
1996年 | 31篇 |
1995年 | 17篇 |
1994年 | 13篇 |
1993年 | 12篇 |
1992年 | 26篇 |
1991年 | 25篇 |
1990年 | 10篇 |
1989年 | 14篇 |
1988年 | 8篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1965年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有4656条查询结果,搜索用时 31 毫秒
31.
32.
33.
Choi HI Lee SP Kim KS Hwang CY Lee YR Chae SK Kim YS Chae HZ Kwon KS 《Free radical biology & medicine》2006,40(4):651-659
The human DnaJ homolog Hdj2 is a cochaperone containing a cysteine-rich zinc finger domain. We identified a specific interaction of Hdj2 with the cellular redox enzyme thioredoxin using a yeast two-hybrid assay and a coimmunoprecipitation assay, thereby investigating how the redox environment of the cell regulates Hdj2 function. In reconstitution experiments with Hsc70, we found that treatment with H2O2 caused the oxidative inactivation of Hdj2 cochaperone activity. Hdj2 inactivation paralleled the oxidation of cysteine thiols and concomitant release of coordinated zinc, suggesting a role of cysteine residues in the zinc finger domain of Hdj2 as a redox sensor of chaperone-mediated protein-folding machinery. H2O2-induced negative regulation of Hdj2 cochaperone activity was also confirmed in mammalian cells using luciferase as a foreign reporter cotransfected with Hsc70 and Hdj2. The in vivo oxidation of cysteine residues in Hdj2 was detected only in thioredoxin-knockdown cells, implying that thioredoxin is involved in the in vivo reduction. The oxidative inactivation of Hdj2 was reversible. Wild-type thioredoxin notably recovered the oxidatively inactivated Hdj2 activity accompanied by the reincorporation of zinc, whereas the catalytically inactive mutant thioredoxin (Cys32Ser/Cys35Ser) did not. Taken together, we propose that oxidation and reduction reversibly regulate Hdj2 function in response to the redox states of the cell. 相似文献
34.
35.
K M Lee K Y Lee H W Choi M Y Cho T H Kwon S Kawabata B L Lee 《European journal of biochemistry》2000,267(12):3695-3703
One of the biological functions of activated phenoloxidase in arthropods is the synthesis of melanin around invaded foreign materials. However, little is known about how activated phenoloxidase synthesizes melanin at the molecular level. Even though it has been suggested that the quinone derivatives generated by activated phenoloxidase might use endogenous protein components for melanin synthesis in arthropods, there is no report of protein components engaged in melanin synthesis induced by activated phenoloxidase. In this study, to isolate and characterize proteins involved in melanin synthesis, we prepared in vitro prophenoloxidase activating solution (designated G-100 solution), specifically showing phenoloxidase activity in the presence of Ca2+ and beta-1, 3-glucan, from the hemolymph of larvae of the coleopteran Tenebrio molitor by using a Sephadex G-100 column. When G-100 solution was incubated with dopamine to induce melanin synthesis in the presence of Ca2+ and beta-1,3-glucan, four types of protein (160 kDa, prophenoloxidase, phenoloxidase and 45 kDa) disappeared from SDS/PAGE under reducing conditions. Under identical conditions, but including phenylthiourea as a phenoloxidase inhibitor added to the G-100 solution, three of these proteins (160 kDa, phenoloxidase and 45 kDa) did not disappear. To characterize these melanization-engaging proteins, we first purified the 160-kDa melanization-engaging protein to homogeneity and raised a polyclonal antibody against it. Analysis of the cDNA revealed that it consisted of 1439 amino-acid residues and showed partial homology with Caenorhabditis elegans vitellogenin precursor-6 (19.7%). Western blot analysis showed that it disappeared when active phenoloxidase induced melanin synthesis. Furthermore, when the purified 160-kDa melanization-engaging protein was added to a G-100 solution deficient in it, melanin synthesis was enhanced compared with the same solution without the protein. These data support the conclusion that the 160-kDa vitellogenin-like protein is involved in arthropod melanin synthesis. 相似文献
36.
Wang W Kwon TH Li C Flyvbjerg A Knepper MA Frøkiaer J Nielsen S 《American journal of physiology. Regulatory, integrative and comparative physiology》2001,280(6):R1632-R1641
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism. 相似文献
37.
38.
39.
40.
K. Hager A. Hazama H. M. Kwon D. D. F. Loo J. S. Handler E. M. Wright 《The Journal of membrane biology》1995,143(2):103-113
The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V
m
), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K
0.5
MI
, K
0.5
Na
, and the Hill coefficient n. At 100 mM NaCl, K
0.5
MI
was about 50 m and was independent of V
m
. At 0.5 mm
myo-inositol, K
0.5
Na
ranged from 76 mm at V
m
=–50 mV to 40 mm at V
m
=–150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K
I
of 64 m at V
m
=–50 mV and 130 m at V
m
= –150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V
m
=–150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol > l-fucose > l-xylose > l-glucose, d-glucose, -methyl-d-glucopyranoside > d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose > d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V
m
=–150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, -methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose > d-xylose, l-xylose, 2-deoxy-d-glucose > myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V
m
. The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model.
Present address: W.M. Keck Biotechnology Resource Laboratory, Boyer Center for Molecular Medicine, Rm, 305A, Yale University, 295 Congress Ave., New Haven, Connecticut 06536-0812
Present address: National Institute for Physiological Sciences, Department of Cell Physiology, Okazaka, 444, JapanContributed equally to this workWe thank John Welborn for the HPLC analysis of the sugar substrates. This work was supported by grants from the National Institutes of Health DK19567, DK42479 and NS25554. 相似文献