首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4365篇
  免费   286篇
  国内免费   7篇
  4658篇
  2024年   4篇
  2023年   19篇
  2022年   53篇
  2021年   91篇
  2020年   48篇
  2019年   80篇
  2018年   113篇
  2017年   105篇
  2016年   168篇
  2015年   213篇
  2014年   273篇
  2013年   317篇
  2012年   385篇
  2011年   394篇
  2010年   209篇
  2009年   209篇
  2008年   306篇
  2007年   252篇
  2006年   191篇
  2005年   188篇
  2004年   181篇
  2003年   185篇
  2002年   139篇
  2001年   125篇
  2000年   107篇
  1999年   76篇
  1998年   34篇
  1997年   20篇
  1996年   31篇
  1995年   18篇
  1994年   13篇
  1993年   12篇
  1992年   26篇
  1991年   25篇
  1990年   10篇
  1989年   14篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1979年   1篇
  1975年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有4658条查询结果,搜索用时 24 毫秒
141.
Although nitric oxide (NO) plays key signaling roles in the nervous systems, excess NO leads to cell death. In this study, the involvement of p38 mitogen-activated protein kinase (p38 MAPK) and apoptosis signal-regulating kinase-1 (ASK1) in NO-induced cell death was investigated in PC12 cells. NO donor transiently activated p38 MAPK in the wild type parental PC12 cells, whereas the p38 MAPK activation was abolished in NO-resistant PC12 cells (PC12-NO-R). p38 MAPK inhibitors protected the cells against NO-induced death, whereas the inhibitors were not significantly protective against the cytotoxicity of reactive oxygen species. Stable transfection with dominant negative p38 MAPK mutant reduced NO-induced cell death. Stable transfection with dominant negative mutant of ASK1 attenuated NO-stimulated activation of p38 MAPK and decreased NO-induced cell death. These results suggest that p38 MAPK and its upstream regulator ASK1 are involved in NO-induced PC12 cell death.  相似文献   
142.
143.
Homologous recombination (HR) is a major mechanism for eliminating DNA double-strand breaks from chromosomes. In this process, the break termini are resected nucleolytically to form 3′ ssDNA (single-strand DNA) overhangs. A recombinase (i.e., a protein that catalyzes homologous DNA pairing and strand exchange) assembles onto the ssDNA and promotes pairing with a homologous duplex. DNA synthesis then initiates from the 3′ end of the invading strand, and the extended DNA joint is resolved via one of several pathways to restore the integrity of the injured chromosome. It is crucial that HR be carefully orchestrated because spurious events can create cytotoxic intermediates or cause genomic rearrangements and loss of gene heterozygosity, which can lead to cell death or contribute to the development of cancer. In this review, we will discuss how DNA motor proteins regulate HR via a dynamic balance of the recombination-promoting and -attenuating activities that they possess.  相似文献   
144.
145.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Ubr1p, the recognition (E3) component of the Saccharomyces cerevisiae N-end rule pathway, contains at least two substrate-binding sites. The type 1 site is specific for N-terminal basic residues Arg, Lys, and His. The type 2 site is specific for N-terminal bulky hydrophobic residues Phe, Leu, Trp, Tyr, and Ile. Previous work has shown that dipeptides bearing either type 1 or type 2 N-terminal residues act as weak but specific inhibitors of the N-end rule pathway. We took advantage of the two-site architecture of Ubr1p to explore the feasibility of bivalent N-end rule inhibitors, whose expected higher efficacy would result from higher affinity of the cooperative (bivalent) binding to Ubr1p. The inhibitor comprised mixed tetramers of beta-galactosidase that bore both N-terminal Arg (type 1 residue) and N-terminal Leu (type 2 residue) but that were resistant to proteolysis in vivo. Expression of these constructs in S. cerevisiae inhibited the N-end rule pathway much more strongly than the expression of otherwise identical beta-galactosidase tetramers whose N-terminal residues were exclusively Arg or exclusively Leu. In addition to demonstrating spatial proximity between the type 1 and type 2 substrate-binding sites of Ubr1p, these results provide a route to high affinity inhibitors of the N-end rule pathway.  相似文献   
146.
Recent studies have identified a beta-cell insulin receptor that functions in the regulation of protein translation and mitogenic signaling similar to that described for insulin-sensitive cells. These findings have raised the novel possibility that beta-cells may exhibit insulin resistance similar to skeletal muscle, liver, and fat. To test this hypothesis, the effects of tumor necrosis factor-alpha (TNFalpha), a cytokine proposed to mediate insulin resistance by interfering with insulin signaling at the level of the insulin receptor and its substrates, was evaluated. TNFalpha inhibited p70(s6k) activation by glucose-stimulated beta-cells of the islets of Langerhans in a dose- and time-dependent manner, with maximal inhibition observed at approximately 20-50 ng/ml, detected after 24 and 48 h of exposure. Exogenous insulin failed to prevent TNFalpha-induced inhibition of p70(s6k), suggesting a defect in the insulin signaling pathway. To further define mechanisms responsible for this inhibition and also to exclude cytokine-induced nitric oxide (NO) as a mediator, the ability of exogenous or endogenous insulin +/- inhibitors of nitric-oxide synthase (NOS) activity, aminoguanidine or N-monomethyl-L-arginine, was evaluated. Unexpectedly, TNFalpha and also interleukin 1 (IL-1)-induced inhibition of p70(s6k) was completely prevented by inhibitors that block NO production. Western blot analysis verified inducible NOS (iNOS) expression after TNFalpha exposure. Furthermore, the ability of IL-1 receptor antagonist protein, IRAP, to block TNFalpha-induced inhibition of p70(s6k) indicated that activation of intra-islet macrophages and the release of IL-1 that induces iNOS expression in beta-cells was responsible for the inhibitory effects of TNFalpha. This mechanism was confirmed by the ability of the peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta12, 14-prostaglandin J2 to attenuate TNFalpha-induced insulin resistance by down-regulating iNOS expression and/or blocking IL-1 release from activated macrophages. Overall, TNFalpha-mediated insulin resistance in beta-cells is characterized by a global inhibition of metabolism mediated by NO differing from that proposed for this proinflammatory cytokine in insulin-sensitive cells.  相似文献   
147.
The Wellcome Trust Conference Centre at Hinxton, UK, was the meeting place of the 7th HUPO Brain Proteome Project Workshop entitled "High Performance Proteomics". It started on Wednesday, March 7, 2007 with a steering committee meeting followed by a two days series of talks dealing with the standardization and handling of tissues, body fluids as well as of proteomics data. The presentation and accompanying vivid discussions created a picture of actual strategies and standards in recent proteomics.  相似文献   
148.
Isoegomaketone (IK) is an essential oil component of Perilla frutescens (L.), but the mechanism by which IK induces apoptosis has never been studied. The purpose of this study was to elucidate the IK-induced apoptotic pathway in DLD1 human colon cancer cells. We observed that IK treatment over 24 h significantly inhibited cell viability in a dose-dependent manner. We also found that IK triggered cleavage of PARP. Moreover, IK treatment resulted in cleavage of caspase-8, -9, and -3 in a dose- and time-dependent manner. IK treatment also resulted in cleavage of Bid and translocation of Bax, and triggered the release of cytochrome c from the mitochondria to the cytoplasm. Furthermore, it resulted in the translocation of apoptosis inducing factor (AIF), a caspase-independent mitochondrial apoptosis factor, from the mitochondria into the nucleus. Overall, these results suggest that IK induces apoptosis through caspase-dependent and capase-independent pathways in DLD1 cells.  相似文献   
149.
Genetic studies in budding and fission yeasts have provided evidence that Rdh54, a Swi2/Snf2-like factor, synergizes with the Dmc1 recombinase to mediate inter-homologue recombination during meiosis. Rdh54 associates with Dmc1 in the yeast two-hybrid assay, but whether the Rdh54–Dmc1 interaction is direct and the manner in which these two recombination factors may functionally co-operate to accomplish their biological task have not yet been defined. Here, using purified Schizosaccharomyces pombe proteins, we demonstrate complex formation between Rdh54 and Dmc1 and enhancement of the recombinase activity of Dmc1 by Rdh54. Consistent with published cytological and chromatin immunoprecipitation data that implicate Rdh54 in preventing the non-specific association of Dmc1 with chromatin, we show here that Rdh54 mediates the efficient removal of Dmc1 from dsDNA. These functional attributes of Rdh54 are reliant on its ATPase function. The results presented herein provide valuable information concerning the Rdh54–Dmc1 protein pair that is germane for understanding their role in meiotic recombination. The biochemical systems established in this study should be useful for the continuing dissection of the action mechanism of Rdh54 and Dmc1.  相似文献   
150.
The Drosophila phototransduction cascade serves as a paradigm for characterizing the regulation of sensory signaling and TRP channels in vivo . Activation of these channels requires phospholipase C (PLC) and may depend on subsequent production of diacylglycerol (DAG) and downstream metabolites . DAG could potentially be produced through a second pathway involving the combined activities of a phospholipase D (PLD) and a phosphatidic acid (PA) phosphatase (PAP). However, a role for a PAP in the regulation of TRP channels has not been described. Here, we report the identification of a PAP, referred to as Lazaro (Laza). Mutations in laza caused a reduction in the light response and faster termination kinetics. Loss of laza suppressed the severity of the phenotype caused by mutation of the DAG kinase, RDGA , indicating that Laza functions in opposition to RDGA. We also showed that the retinal degeneration resulting from overexpression of the PLD was suppressed by elimination of Laza. These data demonstrate a requirement for a PLD/PAP-dependent pathway for achieving the maximal light response. The genetic interactions with both rdgA and Pld indicate that Laza functions in the convergence of both PLC- and PLD-coupled signaling in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号