首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4370篇
  免费   280篇
  国内免费   6篇
  4656篇
  2024年   4篇
  2023年   19篇
  2022年   53篇
  2021年   91篇
  2020年   48篇
  2019年   80篇
  2018年   113篇
  2017年   104篇
  2016年   168篇
  2015年   213篇
  2014年   273篇
  2013年   316篇
  2012年   384篇
  2011年   394篇
  2010年   209篇
  2009年   208篇
  2008年   306篇
  2007年   252篇
  2006年   191篇
  2005年   188篇
  2004年   181篇
  2003年   185篇
  2002年   139篇
  2001年   125篇
  2000年   107篇
  1999年   76篇
  1998年   35篇
  1997年   21篇
  1996年   31篇
  1995年   17篇
  1994年   13篇
  1993年   12篇
  1992年   26篇
  1991年   26篇
  1990年   10篇
  1989年   14篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1979年   1篇
  1975年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有4656条查询结果,搜索用时 15 毫秒
31.
32.
The influence of the stage of the cell cycle of donor nuclei on the development of mouse oocytes enucleated at telophase I was examined. After nuclear transplantation and activation, a high proportion of the oocytes remodelled a nucleus, emitted a polar body and formed a pronuclear-like nucleus. Most of the reconstituted embryos that received an interphase nucleus 30-32 h or 34-36 h after treatment with human chorionic gonadotrophin (hCG) arrested at the 2-cell stage. The reconstituted embryos were able to develop to blastocysts when nuclei from late 2-cell embryos (44-46 and 48-50 h after hCG) were transferred to the oocytes. The resulting blastocysts were transferred to recipients and ten live young were obtained from the embryos that formed a pronuclear-like nucleus after extrusion of a polar body. Thus, the developmental ability of the reconstituted embryos was critically influenced by the stage of the cell cycle of the donor nuclei.  相似文献   
33.
We previously reported that protein kinase C (PKC) activation induced meiotic maturation (germinal vesicle breakdown, GVBD) of Rana dybowskii follicular oocytes cultured in vitro without hormone treatment. The experiments reported here were carried out to establish whether ovarian follicles ovulated in response to PKC activation during culture. A phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), was used for PKC activation. TPA addition (10 microM) to cultured ovarian fragments induced ovulation and maturation of the oocytes similar to that seen following addition of frog pituitary homogenate (FPH, 0.05 pituitary/ml) or progesterone (0.5 microgram/ml). Such changes were not observed when ovarian fragments were treated with inactive phorbol ester. The time course of TPA-induced ovulation was similar to that produced by FPH-stimulated ovulation. Both TPA- and FPH-stimulated ovulation and maturation were blocked by treatment with cycloheximide, forskolin (an adenylate cyclase stimulator), and 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine (H-7; a PKC inactivator). FPH treatment markedly increased progesterone levels in the medium during ovarian fragment culture whereas TPA treatment failed to elevate progesterone levels. Thus, TPA treatment mimics FPH and progesterone in inducing ovulation and meiotic maturation in cultured amphibian ovarian fragments. The data strongly suggest that PKC plays an important role in regulating ovulation as well as in modulating amphibian oocyte maturation during follicular differentiation.  相似文献   
34.
Purified recombinant murine macrophage inflammatory protein-1 alpha (rmuMIP-1 alpha), a cytokine with myelopoietic activity in vitro, was assessed in vivo by injection into C3H/HeJ mice for effects on proliferation (percentage of cells in S phase DNA synthesis of the cell cycle) and absolute numbers of granulocyte-macrophage, erythroid, and multipotential progenitor cells in the femur and spleen, and on nucleated cellularity in the bone marrow, spleen, and blood. rmuMIP-1 alpha rapidly decreased cycling rates (at 2 to 10 micrograms/mouse i.v.) and absolute numbers (at 5 to 10 micrograms/mouse i.v.) of myeloid progenitor cells in the marrow and spleen. These effects were dose- and time-dependent and reversible. Suppressive effects were noted within 3 to 24 h for cell cycling and absolute numbers of progenitor cells in the marrow and spleen, and by 48 h for circulating neutrophils. A study comparing the effects of i.v. injection of rmuMIP-1 alpha versus rmuMIP-1 beta, a biochemically similar molecule but with no myelosuppressive effects in vitro, demonstrated myelosuppression in vivo by rmuMIP-1 alpha, but not by rmuMIP-1 beta. The results suggest that rmuMIP-1 alpha has myelosuppressive activity in vivo and offers the possibility that it may be a useful adjunct to treatments involving cytotoxic drugs because of its reversible suppressive effects on normal progenitor cell cycling.  相似文献   
35.
Complementation analyses of radiation-induced deletion mutations involving the albino (c) locus in Chromosome (Chr) 7 of the mouse have identified several loci, in addition toc, that have important roles in development. The mesoderm-deficient (msd) and hepatocyte-specific developmental regulation-1 (hsdr-1) loci, which are proximal and tightly linked toc, are important in the formation of mesoderm and in the regulation of liver- and kidney-specific induction of various enzymes and proteins, respectively. Cloning deletion-breakpoint-fusion fragments caused by lethal albino deletions that genetically define the extents of themsd andhsdr-1 loci is one way of generating molecular probes for studying the gene(s) involved in these phenotypes. The distal breakpoints of five such deletions were positioned on a long-range (PFGE) map of 1.7 Mb of wild-type DNA surrounding thec, D7Was12, andEmv-23 loci. In addition, the distal breakpoints of two viable albino deletions, which remove part of the tyrosinase gene and extend distally, were localized in the vicinity of the lethal deletion breakpoints. Therefore, the viable deletions can be exploited to generate additional DNA probes that should facilitate the isolation of breakpoint clones from chromosomes carrying lethal deletions defininghsdr-1 andmsd.  相似文献   
36.
Following partial purification of macrophage nitric oxide (NO) synthase, enzyme activity requires L-arginine, NADPH, and constitutive cytosolic factors, one of which is tetrahydrobiopterin (BH4) (Kwon, N.S., Nathan, C.F. and Stuehr, D.J. [1989] J. Biol. Chem. 264, 20496). Here we identify FAD and GSH as two additional cofactors needed for full enzyme activity. With all defined cytosolic cofactors in excess, NO synthesis was linear over 3 h and was approximately 50% dependent on exogenous FAD, approximately 50% on glutathione (GSH), 84% on tetrahydrobiopterin (BH4), 95% on NADPH, and 98% on L-arginine. The concentrations of added FAD, GSH, and BH4 required for optimal activity were consistent with their levels in macrophage cytosol. Kinetic studies showed that GSH (or DTT) had little or no effect on the rate of NO generation over the first 20-30 min of the reaction, but prevented a subsequent dropoff in rate. This effect was distinct from thiol participation in BH4 regeneration. In contrast, exogenous FAD doubled the rate of NO synthesis throughout the assay period, consistent with a cofactor role. The role of NADPH was not to regenerate BH4, furnish NADP+, nor form reactive oxygen intermediates. These findings demonstrate NO synthesis by a partially purified enzyme in an otherwise defined system, and suggest that an NADPH-utilizing FAD flavoprotein may participate in the reaction.  相似文献   
37.
Mouse ficolin A is a plasma protein with lectin activity, and plays a role in host defense by binding carbohydrates, especially GlcNAc, on microorganisms. The ficolin A subunit consists of an N-terminal signal peptide, a collagen-like domain, and a C-terminal fibrinogen-like domain. In this study, we show that ficolin A can be synthesized and oligomerized in a cell and secreted into culture medium. We also identify a functionally relevant signal peptide of ficolin A by using MS/MS analysis to determine the N-terminal sequence of secreted ficolin A. When the signal peptide of mouse ficolin A was fused with enhanced green fluorescent protein (EGFP), EGFP was released into HEK 293 cell medium, suggesting that the signal peptide can efficiently direct ficolin A secretion. Moreover, our results suggest that the signal peptide of ficolin A has potential application for the production of useful secretory proteins.  相似文献   
38.
The Schizosaccharomyces pombe pfh1+ gene (PIF1 homolog) encodes an essential enzyme that has both DNA helicase and ATPase activities and is implicated in lagging strand DNA processing. Mutations in the pfh1+ gene suppress a temperature-sensitive allele of cdc24+, which encodes a protein that functions with Schizosaccharomyces pombe Dna2 in Okazaki fragment processing. In this study, we describe the enzymatic properties of the Pfh1 helicase and the genetic interactions between pfh1 and cdc24, dna2, cdc27 or pol 3, all of which are involved in the Okazaki fragment metabolism. We show that a full-length Pfh1 fusion protein is active as a monomer. The helicase activity of Pfh1 displaced only short (<30 bp) duplex DNA regions efficiently in a highly distributive manner and was markedly stimulated by the presence of a replication-fork-like structure in the substrate. The temperature-sensitive phenotype of a dna2-C2 or a cdc24-M38 mutant was suppressed by pfh1-R20 (a cold-sensitive mutant allele of pfh1) and overexpression of wild-type pfh1+ abolished the ability of the pfh1 mutant alleles to suppress dna2-C2 and cdc24-M38. Purified Pfh1-R20 mutant protein displayed significantly reduced ATPase and helicase activities. These results indicate that the simultaneous loss-of-function mutations of pfh1+ and dna2+ (or cdc24+) are essential to restore the growth defect. Our genetic data indicate that the Pfh1 DNA helicase acts in concert with Cdc24 and Dna2 to process single-stranded DNA flaps generated in vivo by pol δ-mediated lagging strand displacement DNA synthesis.  相似文献   
39.
An unprecedented outbreak of H5N1 highly pathogenic avian influenza (HPAI) has been reported for poultry in eight different Asian countries, including South Korea, since December 2003. A phylogenetic analysis of the eight viral genes showed that the H5N1 poultry isolates from South Korea were of avian origin and contained the hemagglutinin and neuraminidase genes of the A/goose/Guangdong/1/96 (Gs/Gd) lineage. The current H5N1 strains in Asia, including the Korean isolates, share a gene constellation similar to that of the Penfold Park, Hong Kong, isolates from late 2002 and contain some molecular markers that seem to have been fixed in the Gs/Gd lineage virus since 2001. However, despite genetic similarities among recent H5N1 isolates, the topology of the phylogenetic tree clearly differentiates the Korean isolates from the Vietnamese and Thai isolates which have been reported to infect humans. A representative Korean isolate was inoculated into mice, with no mortality and no virus being isolated from the brain, although high titers of virus were observed in the lungs. The same isolate, however, caused systemic infections in chickens and quail and killed all of the birds within 2 and 4 days of intranasal inoculation, respectively. This isolate also replicated in multiple organs and tissues of ducks and caused some mortality. However, lower virus titers were observed in all corresponding tissues of ducks than in chicken and quail tissues, and the histological lesions were restricted to the respiratory tract. This study characterizes the molecular and biological properties of the H5N1 HPAI viruses from South Korea and emphasizes the need for comparative analyses of the H5N1 isolates from different countries to help elucidate the risk of a human pandemic from the strains of H5N1 HPAI currently circulating in Asia.  相似文献   
40.
Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life‐cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life‐cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life‐cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO2eq MJ?1) were 2.1–9.3 for corn‐, ?0.7 for corn stover‐, ?3.4 to 12.9 for switchgrass‐, and ?20.1 to ?6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life‐cycle GHG emissions (g CO2eq MJ?1, 100 cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18–26 for switchgrass ethanol, and ?7 to ?0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar‐ and willow‐derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号