首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19565篇
  免费   1884篇
  国内免费   631篇
  2023年   116篇
  2022年   263篇
  2021年   471篇
  2020年   321篇
  2019年   412篇
  2018年   472篇
  2017年   350篇
  2016年   592篇
  2015年   965篇
  2014年   1057篇
  2013年   1253篇
  2012年   1452篇
  2011年   1429篇
  2010年   938篇
  2009年   739篇
  2008年   1009篇
  2007年   944篇
  2006年   891篇
  2005年   819篇
  2004年   750篇
  2003年   716篇
  2002年   642篇
  2001年   551篇
  2000年   484篇
  1999年   450篇
  1998年   217篇
  1997年   203篇
  1996年   186篇
  1995年   167篇
  1994年   151篇
  1993年   121篇
  1992年   245篇
  1991年   244篇
  1990年   203篇
  1989年   216篇
  1988年   189篇
  1987年   152篇
  1986年   144篇
  1985年   168篇
  1984年   123篇
  1983年   98篇
  1982年   90篇
  1981年   97篇
  1979年   109篇
  1978年   91篇
  1977年   71篇
  1976年   68篇
  1975年   88篇
  1974年   89篇
  1973年   81篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3′-untranslated region (3′-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.  相似文献   
992.
Monogenic diabetes is caused by mutations that reduce β-cell function. While Sanger sequencing is the standard method used to detect mutated genes. Next-generation sequencing techniques, such as whole exome sequencing (WES), can be used to find multiple gene mutations in one assay. We used WES to detect genetic mutations in both permanent neonatal (PND) and type 1B diabetes (T1BD).A total of five PND and nine T1BD patients were enrolled in this study. WES variants were assessed using VarioWatch, excluding those identified previously. Sanger sequencing was used to confirm the mutations, and their pathogenicity was established via the literature or bioinformatic/functional analysis. The PND and T1BD patients were diagnosed at 0.1–0.5 and 0.8–2.7?years of age, respectively. Diabetic ketoacidosis was present at diagnosis in 60% of PND patients and 44.4% of T1BD patients. We found five novel mutations in five different genes. Notably, patient 602 had a novel homozygous missense mutation c.1295C?>?A (T432?K) in the glucokinase (GCK) gene. Compared to the wild-type recombinant protein, the mutant protein had significantly lower enzymatic activity (2.5%, p?=?0.0002) and Vmax (1.23?±?0.019 vs. 0.33?±?0.016, respectively; p?=?0.005). WES is a robust technique that can be used to unravel the etiologies of genetically heterogeneous forms of diabetes. Homozygous inactivating mutations of the GCK gene may have a significant role in PND pathogenesis.  相似文献   
993.
The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = –0.337, rs = –0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.  相似文献   
994.
刘畅  刘安 《生物信息学》2017,15(4):249-254
Mg2+依赖性蛋白磷酸酶1δ(protein phosphatase magnesium-dependent 1δ,PPM1D)作为肝癌潜在的预后标志物和治疗靶点,其致癌机制和预后价值仍未完全阐明。为了全面认识PPM1D,使用生物信息学方法,对PPM1D蛋白的序列同源性、组织表达、亚细胞定位、理化性质、空间结构及蛋白质相互作用网络进行分析。结果表明:人PPM1D基因编码605个氨基酸组成的多肽,与物种进化程度一致,属于PP2C蛋白超家族,是碱性不稳定的亲水蛋白,无信号肽和跨膜区域;PPM1D蛋白主要定位于细胞核内,其主要二级结构为随机卷曲,存在磷酸化、乙酰化、甲基化和泛素化位点,与PPM1D相互作用的蛋白主要是细胞周期检查点蛋白和细胞损伤修复相关蛋白。根据分析结果阐述了PPM1D蛋白与癌症的相关性以及PPM1D蛋白作为癌症标志物的理论基础,为进一步研究该蛋白及其参与的信号通路提供一定的借鉴和参考。  相似文献   
995.
目前新型冠状病毒肺炎(COVID-19)疫情仍在全球肆虐,但尚无针对该病毒的治疗特效药.在此背景,以美国化学文摘社(Chemical Abstracts Service,CAS)提供的SARS-CoV-2病毒及宿主蛋白靶标为研究对象,运用基因功能富集、蛋白网络等方法进行生物信息分析.结果发现,人网格蛋白介导型内吞和依赖...  相似文献   
996.
997.
998.
Abnormally expressed long non‐coding RNAs (lncRNAs) have been recognized as potential diagnostic biomarkers or therapeutic targets in non‐small cell lung cancer (NSCLC). The role of the novel lnc‐CYB561‐5 in NSCLC and its specific biological activity remain unknown. In this study, lncRNAs highly expressed in NSCLC tissue samples compared with paired adjacent normal tissue samples and atypical adenomatous hyperplasia were identified by RNA‐seq analysis. Lnc‐CYB561‐5 is highly expressed in human NSCLC and is associated with a poor prognosis in lung adenocarcinoma. In vivo, downregulation of lnc‐CYB561‐5 significantly decreases tumour growth and metastasis. In vitro, lnc‐CYB561‐5 knockdown treatment inhibits cell migration, invasion and proliferation ability, as well as glycolysis rates. In addition, RNA pulldown and RNA immunoprecipitation (RIP) assays show that basigin (Bsg) protein interacts with lnc‐CYB561‐5. Overall, this study demonstrates that lnc‐CYB561‐5 is an oncogene in NSCLC, which is involved in the regulation of cell proliferation and metastasis. Lnc‐CYB561‐5 interacts with Bsg to promote the expression of Hk2 and Pfk1 and further lead to metabolic reprogramming of NSCLC cells.  相似文献   
999.
Cancer-associated adipocytes (CAAs), which are adipocytes transformed by cancer cells, are of great importance in promoting the progression of breast cancer. However, the underlying mechanisms involved in the crosstalk between cancer cells and adipocytes are still unknown. Here we report that CAAs and breast cancer cells communicate with each other by secreting the cytokines leukemia inhibitory factor (LIF) and C-X-C subfamily chemokines (CXCLs), respectively. LIF is a pro-inflammatory cytokine secreted by CAAs, which promotes migration and invasion of breast cancer cells via the Stat3 signaling pathway. The activation of Stat3 induced the secretion of glutamic acid-leucine-arginine (ELR) motif CXCLs (CXCL1, CXCL2, CXCL3 and CXCL8) in tumor cells. Interestingly, CXCLs in turn activated the ERK1/2/NF-κB/Stat3 signaling cascade to promote the expression of LIF in CAAs. In clinical breast cancer pathology samples, the up-regulation of LIF in paracancerous adipose tissue was positively correlated with the activation of Stat3 in breast cancer. Furthermore, we verified that adipocytes enhanced lung metastasis of breast cancer cells, and the combination of EC330 (targeting LIF) and SB225002 (targeting C-X-C motility chemokine receptor 2 (CXCR2)) significantly reduced lung metastasis of breast cancer cells in vivo. Our findings reveal that the interaction of adipocytes with breast cancer cells depends on a positive feedback loop between the cytokines LIF and CXCLs, which promotes breast cancer invasion and metastasis.  相似文献   
1000.
BRCA1 is frequently down-regulated in breast cancer, the underlying mechanism is unclear. Here we identified DCAF8L1, an X-linked gene product, as a DDB1-Cullin associated Factor (DCAF) for CUL4 E3 ligases to target BRCA1 and BARD1 for proteasomal degradation. Forced expression of DCAF8L1 caused reduction of BRCA1 and BARD1, and impaired DNA damage repair function, conferring increased sensitivity to irradiation and DNA damaging agents, as well as Olaparib, a PARPi anticancer drug; while depletion of DCAF8L1 restored BRCA1 and suppressed the growth of its xenograft tumors. Furthermore, the expression of DCAF8L1 was induced in human H9 ES cells during transition from primed to naïve state when Xi chromosome was reactivated. Aberrant expression of DCAF8L1 was observed in human breast fibroadenoma and breast cancer. These findings suggest that CRL4DCAF8L1 is an important E3 ligase that may participate in the development of breast cancer, probably through regulating the stability of BRCA1 and BARD1 tumor suppressor, linking BRCA1 and X chromosome inactivation to breast carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号