首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26795篇
  免费   2225篇
  国内免费   1374篇
  2024年   55篇
  2023年   256篇
  2022年   628篇
  2021年   935篇
  2020年   669篇
  2019年   848篇
  2018年   945篇
  2017年   729篇
  2016年   1065篇
  2015年   1644篇
  2014年   1901篇
  2013年   2043篇
  2012年   2390篇
  2011年   2335篇
  2010年   1371篇
  2009年   1311篇
  2008年   1536篇
  2007年   1403篇
  2006年   1319篇
  2005年   1091篇
  2004年   1079篇
  2003年   894篇
  2002年   731篇
  2001年   460篇
  2000年   393篇
  1999年   334篇
  1998年   231篇
  1997年   183篇
  1996年   178篇
  1995年   141篇
  1994年   140篇
  1993年   94篇
  1992年   135篇
  1991年   104篇
  1990年   111篇
  1989年   91篇
  1988年   67篇
  1987年   73篇
  1986年   49篇
  1985年   45篇
  1984年   50篇
  1983年   33篇
  1982年   23篇
  1981年   16篇
  1979年   20篇
  1975年   20篇
  1974年   20篇
  1973年   19篇
  1972年   20篇
  1969年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Accumulating evidence has indicated that intestinal microbiota is involved in the development of various human diseases, including cardiovascular diseases (CVDs). In the recent years, both human and animal experiments have revealed that alterations in the composition and function of intestinal flora, recognized as gut microflora dysbiosis, can accelerate the progression of CVDs. Moreover, intestinal flora metabolizes the diet ingested by the host into a series of metabolites, including trimethylamine N‐oxide, short chain fatty acids, secondary bile acid and indoxyl sulfate, which affects the host physiological processes by activation of numerous signalling pathways. The aim of this review was to summarize the role of gut microbiota in the pathogenesis of CVDs, including coronary artery disease, hypertension and heart failure, which may provide valuable insights into potential therapeutic strategies for CVD that involve interfering with the composition, function and metabolites of the intestinal flora.  相似文献   
972.
Severe reduction in the β‐cell number (collectively known as the β‐cell mass) contributes to the development of both type 1 and type 2 diabetes. Recent pharmacological studies have suggested that increased pancreatic β‐cell proliferation could be due to specific inhibition of adenosine kinase (ADK). However, genetic evidence for the function of pancreatic β‐cell ADK under physiological conditions or in a pathological context is still lacking. In this study, we crossed mice carrying LoxP‐flanked Adk gene with Ins2‐Cre mice to acquire pancreatic β ‐cell ADK deficiency (Ins2‐Cre±Adkfl/fl) mice. Our results revealed that Ins2‐Cre+/‐Adkfl/fl mice showed improved glucose metabolism and β‐cell mass in younger mice, but showed normal activity in adult mice. Moreover, Ins2‐Cre±Adkfl/fl mice were more resistant to streptozotocin (STZ) induced hyperglycaemia and pancreatic β‐cell damage in adult mice. In conclusion, we found that ADK negatively regulates β‐cell replication in young mice as well as under pathological conditions, such as STZ induced pancreatic β‐cell damage. Our study provided genetic evidence that specific inhibition of pancreatic β‐cell ADK has potential for anti‐diabetic therapy.  相似文献   
973.
Cell‐derived microvesicles are membrane vesicles produced by the outward budding of the plasma membrane and released by almost all types of cells. These have been considered as another mechanism of intercellular communication, because they carry active molecules, such as proteins, lipids and nucleic acids. Furthermore, these are present in circulating fluids, such as blood and urine, and are closely correlated to the progression of pathophysiological conditions in many diseases. Recent studies have revealed that microvesicles have a dual effect of damage and protection of receptor cells. However, the nature of the active molecules involved in this effect remains unclear. The present study mainly emphasized the mechanism of microvesicles and the active molecules mediating the different biological effects of receptor cells by affecting autophagy, apoptosis and inflammation pathways. The effective ways of blocking microvesicles and its active molecules in mediating cell damage when microvesicles exert harmful effects were also discussed.  相似文献   
974.
A prototype of DNA nanorobot with the ability to transport molecular payloads was designed to target cancer cells in tissue culture. Moreover, a further step was taken to succeed in the first in vivo application of the DNA nanorobot for cancer therapy. The robot was constructed using aptamer and DNA origami to fold a 90‐nm tubular device to carry the blood coagulation protease thrombin inside, shielded from circulating platelets and plasma fibrinogen. The recognition and binding of the aptamer to its tumour‐specific target molecule triggered the robot unfolding to expose thrombin to the blood, which in turn activated coagulation at the local tumour site, resulting in tumour necrosis and inhibition of tumour growth. Since all solid‐tumour feeding vessels are virtually the same, this strategy could be effective against many types of malignant diseases.  相似文献   
975.
The long noncoding RNAs (lncRNAs) have been increasingly appreciated as key players underlying tumourigenesis and hold great potentials as prognostic biomarkers and therapeutic targets. However, their roles in head neck squamous cell carcinoma (HNSCC) have remained incompletely known. Here, we sought to reveal the oncogenic roles and clinical significance of a tumour‐associated lncRNA, zinc finger E‐box binding homeobox 2 antisense RNA 1 (ZEB2‐AS1), in HNSCC. ZEB2‐AS1 was aberrantly overexpressed in a fraction of HNSCC samples. Its overexpression significantly associated with large tumour size, cervical node metastasis and reduced overall and disease‐free survival. Antisense oligonucleotides (ASO)‐mediated ZEB2‐AS1 depletion markedly inhibited cell proliferation, migration and invasion while triggered apoptosis in HNSCC cells in part via modulating ZEB2 mRNA stability. Enforced overexpression of ZEB2 largely attenuated the phenotypic changes resulted from ZEB2‐AS1 inhibition except the impaired cell proliferation. In addition, ZEB2‐AS1 was required for TGF‐β1‐induced epithelial‐mesenchymal transition (EMT) in vitro. Significantly reduced tumour growth and lung metastasis were observed in ZEB2‐AS1‐depleted cells in HNSCC xenograft animal models. Taken together, our findings reveal that overexpression of ZEB2‐AS1 associates with tumour aggressiveness and unfavourable prognosis by serving as a putative oncogenic lncRNA and a novel prognostic biomarker in HNSCC.  相似文献   
976.
Phosphoinositide 3‐kinase gamma (PI3Kγ) draws an increasing attention due to its link with deadly cancer, chronic inflammation and allergy. But the development of PI3Kγ selective inhibitors is still a challenging endeavor because of the high sequence homology with the other PI3K isoforms. In order to acquire valuable information about the interaction mechanism between potent inhibitors and PI3Kγ, a series of PI3Kγ isoform‐selective inhibitors were analyzed by a systematic computational method, combining 3D‐QSAR, molecular docking, molecular dynamic (MD) simulations, free energy calculations and decomposition. The general structure–activity relationships were revealed and some key residues relating to selectivity and high activity were highlighted. It provides precious guidance for rational virtual screening, modification and design of selective PI3Kγ inhibitors. Finally, ten novel inhibitors were optimized and P10 showed satisfactory predicted bioactivity, demonstrating the feasibility to develop potent PI3Kγ inhibitors through this computational modeling and optimization.  相似文献   
977.
978.
Polymer dielectrics such as poly(vinylidene fluoride) (PVDF) have drawn tremendous attention in high energy density capacitors because of their high dielectric constant and ease of processing. However, the discharged energy density attained with these materials is restrained by the inferior breakdown strength and electric resistivity. Herein, PVDF composite films with a nanosized interlayer of assembled boron nitride nanosheets (BNNSs) that is aligned along the in‐plane direction are prepared through a simple layer‐by‐layer solution‐casting process. Compared to the pristine PVDF, the composite films show remarkably suppressed leakage current, resulting in a high breakdown strength and a superior energy density which are 136% and 275%, respectively, that of the pristine PVDF. The experimental results and computational simulations reveal that the compact and successive interlayer of assembled BNNSs can largely mitigate the local field distortion and block the propagation of electrical treeing, which is advantageous over the conventional dielectric polymer nanocomposites. Notably, unlike the previous dielectric polymer nanocomposites that are usually incorporated with a high volume fraction of nanofillers, i.e., 5–10 vol%, the present composites contain only an extremely low content of nanfillers, e.g., 0.16 vol%. These findings offer a novel paradigm for fabricating high energy density and high efficiency polymer dielectrics.  相似文献   
979.
Rechargeable lithium–sulfur batteries have attracted tremendous scientific attention owing to their superior energy density. However, the sulfur electrochemistry involves multielectron redox reactions and complicated phase transformations, while the final morphology of solid‐phase Li2S precipitates largely dominate the battery's performance. Herein, a triple‐phase interface among electrolyte/CoSe2/G is proposed to afford strong chemisorption, high electrical conductivity, and superb electrocatalysis of polysulfide redox reactions in a working lithium–sulfur battery. The triple‐phase interface effectively enhances the kinetic behaviors of soluble lithium polysulfides and regulates the uniform nucleation and controllable growth of solid Li2S precipitates at large current density. Therefore, the cell with the CoSe2/G functional separator delivers an ultrahigh rate cycle at 6.0 C with an initial capacity of 916 mAh g?1 and a capacity retention of 459 mAh g?1 after 500 cycles, and a stable operation of high sulfur loading electrode (2.69–4.35 mg cm?2). This work opens up a new insight into the energy chemistry at interfaces to rationally regulate the electrochemical redox reactions, and also inspires the exploration of related energy storage and conversion systems based on multielectron redox reactions.  相似文献   
980.
Herein, a high figure of merit (ZT) of ≈1.7 at 823 K is reported in p‐type polycrystalline Cd‐doped SnSe by combining cation vacancies and localized‐lattice engineering. It is observed that the introduction of Cd atoms in SnSe lattice induce Sn vacancies, which act as p‐type dopants. A combination of facile solvothermal synthesis and fast spark plasma sintering technique boosts the Sn vacancy to a high level of ≈2.9%, which results in an optimum hole concentration of ≈2.6 × 1019 cm?3 and an improved power factor of ≈6.9 µW cm?1 K?2. Simultaneously, a low thermal conductivity of ≈0.33 W m?1 K?1 is achieved by effective phonon scattering at localized crystal imperfections, as observed by detailed structural characterizations. Density functional theory calculations reveal that the role of Cd atoms in the SnSe lattice is to reduce the formation energy of Sn vacancies, which in turn lower the Fermi level down into the valence bands, generating holes. This work explores the fundamental Cd‐doping mechanisms at the nanoscale in a SnSe matrix and demonstrates vacancy and localized‐lattice engineering as an effective approach to boosting thermoelectric performance. The work provides an avenue in achieving high‐performance thermoelectric properties of materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号