首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3465篇
  免费   245篇
  国内免费   3篇
  2024年   4篇
  2023年   11篇
  2022年   31篇
  2021年   65篇
  2020年   54篇
  2019年   76篇
  2018年   66篇
  2017年   81篇
  2016年   103篇
  2015年   200篇
  2014年   231篇
  2013年   239篇
  2012年   305篇
  2011年   302篇
  2010年   199篇
  2009年   195篇
  2008年   244篇
  2007年   234篇
  2006年   188篇
  2005年   167篇
  2004年   178篇
  2003年   145篇
  2002年   120篇
  2001年   39篇
  2000年   38篇
  1999年   33篇
  1998年   25篇
  1997年   23篇
  1996年   16篇
  1995年   12篇
  1994年   9篇
  1993年   10篇
  1992年   10篇
  1991年   3篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1982年   2篇
  1977年   2篇
  1975年   4篇
  1973年   6篇
  1972年   7篇
  1971年   6篇
  1970年   2篇
  1969年   3篇
  1967年   1篇
  1966年   1篇
  1954年   2篇
  1953年   2篇
排序方式: 共有3713条查询结果,搜索用时 15 毫秒
171.
Lee HY  Bahn SC  Kang YM  Lee KH  Kim HJ  Noh EK  Palta JP  Shin JS  Ryu SB 《The Plant cell》2003,15(9):1990-2002
To elucidate the cellular functions of phospholipase A(2) in plants, an Arabidopsis cDNA encoding a secretory low molecular weight phospholipase A(2) (AtsPLA(2)beta) was isolated. Phenotype analyses of transgenic plants showed that overexpression of AtsPLA(2)beta promotes cell elongation, resulting in prolonged leaf petioles and inflorescence stems, whereas RNA interference-mediated silencing of AtsPLA(2)beta expression retards cell elongation, resulting in shortened leaf petioles and stems. AtsPLA(2)beta is expressed in the cortical, vascular, and endodermal cells of the actively growing tissues of inflorescence stems and hypocotyls. AtsPLA(2)beta then is secreted into the extracellular spaces, where signaling for cell wall acidification is thought to occur. AtsPLA(2)beta-overexpressing or -silenced transgenic plants showed altered gravitropism in inflorescence stems and hypocotyls. AtsPLA(2)beta expression is induced rapidly by auxin treatment and in the curving regions of inflorescence stems undergoing the gravitropic response. These results suggest that AtsPLA(2)beta regulates the process of cell elongation and plays important roles in shoot gravitropism by mediating auxin-induced cell elongation.  相似文献   
172.
173.
Heme-responsive motifs (HRMs) mediate heme regulation of diverse regulatory proteins. The heme activator protein Hap1 contains seven HRMs, but only one of them, HRM7, is essential for heme activation of Hap1. To better understand the molecular basis underlying the biological significance of HRMs, we examined the effects of various mutations of HRM7 on Hap1. We found that diverse mutations of HRM7 significantly diminished the extent of Hap1 activation by heme and moderately enhanced the interaction of Hap1 with Hsp90. Furthermore, deletions of nonregulatory sequences completely abolished heme activation of Hap1 and greatly enhanced the interaction of Hap1 with Hsp90. These results show that the biological functions of HRMs and Hsp90 are highly sensitive to structural changes. The unique role of HRM7 in heme activation stems from its specific structural environment, not its mere presence. Likewise, the role of Hsp90 in Hap1 activation is dictated by the conformational or structural state of Hap1, not by the mere strength of Hap1-Hsp90 interaction. It appears likely that HRM7 and Hsp90 act together to promote the Hap1 conformational changes that are necessary for Hap1 activation. Such fundamental mechanisms of HRM-Hsp90 cooperation may operate in diverse regulatory systems to mediate signal transduction.  相似文献   
174.
A series of novel MMP-13 and TNF-alpha converting enzyme inhibitors based on piperazine 2-hydroxamic acid scaffolds are described. The TACE, MMP-1 and MMP-13 activity of these inhibitors as well as the effect of substitution of the piperazine nitrogen and the P-1' benzyloxy tailpiece is discussed. Moderate in vivo activity is observed with several members of this group.  相似文献   
175.
176.
Diabetes is associated with endothelial dysfunction and increased risk of hypertension, cardiovascular disease, and renal complications. Earlier studies have revealed that hyperglycemia impairs nitric oxide (NO) production and diabetes causes endothelial dysfunction in humans and experimental animals. This study was designed to test the effects of altered concentrations of glucose, insulin, and glucagon, the principal variables in types I and II diabetes, on NO production and endothelial NO synthase (eNOS) expression in cultured human coronary endothelial cells. Cultured endothelial cells were incubated in the presence of glucose at either normal (5.6 mM) or high (25 mM) concentrations for 7 days. The rates of basal and bradykinin-stimulated NO production (nitrate + nitrite) and eNOS protein expression (Western blot) were then determined at the basal condition and in the presence of insulin (10(-8) and 10(-7) M), glucagon (10(-8) and 10(-7) M), or both. Incubation with a high-glucose concentration for 7 days significantly downregulated, whereas insulin significantly upregulated, basal and bradykinin-stimulated NO production and eNOS expression in cultured endothelial cells. The stimulatory action of insulin was mitigated by high-glucose concentration and abolished by cotreatment of cells with glucagon. Thus hyperglycemia, insulinopenia, and hyperglucagonemia, which frequently coexist in diabetes, can work in concert to suppress NO production by human coronary artery endothelial cells.  相似文献   
177.
The H serogroup of Escherichia coli is determined by the flagellar antigen, flagellin. Sequence analysis of the flagellin gene, fliC, reveals a central variable region and the highly conserved N- and C-termini. This variable region has been shown to encode both H-specific and cross-reactive epitopes. Using polyclonal antibodies, we mapped the linear H-specific determinants in flagellin from four E. coli serotypes O157:H10, 0138:H14, O157:H42 and O157:H43. The specificity of all potential fragments was verified with 52 ECRC (Escherichia coli Reference Center) H-specific antisera. Our results indicated that: (a) a specific determinant of H10 flagellin (1263 bp long) maps to the region covering amino acid residues 305-331; (b) a specific determinant of H14 flagellin (1653 bp long) maps to the region covering amino acid residues 430-461; (c) a specific determinant of H42 flagellin (1281 bp long) maps to a region covering amino acid residues 171-201; and (d) a specific determinant of H43 flagellin (1506 bp long) maps to a region covering amino acid residues 200-260.  相似文献   
178.
In Caenorhabditis elegans, three PDZ domain proteins, Lin-2, Lin-7, and Lin-10, are necessary for the proper targeting of the Let-23 growth factor receptor to the basolateral surface of epithelial cells. It has been demonstrated that homologues of Lin-2, Lin-7, and Lin-10 form a heterotrimeric complex in mammalian brain. Using Far Western overlay assay, we have identified additional proteins that can bind to the amino terminus of mLin-7 and cloned the genes encoding these proteins using bacterial expression cloning. We call these proteins Pals, for proteins associated with Lin-7. These proteins, which include mammalian Lin-2, contain a conserved mLin-7 binding domain in addition to guanylate kinase, PDZ (postsynaptic density 95/discs large/zona occludens-1), and Src homology 3 domains. Using site-directed mutagenesis, we have identified the conserved residues among these proteins crucial for mLin-7 binding. Two of these proteins, Pals1 and Pals2, are newly described. Pals1 consists of 675 amino acids and maps to mouse chromosome 12. Pals2 was found to exist in two splice forms of 539 and 553 amino acids and maps to mouse chromosome 6. Like mLin-2, Pals1 and Pals2 localize to the lateral membrane in Madin-Darby canine kidney cells. Pals proteins represent a new subfamily of membrane-associated guanylate kinases that allow for multiple targeting complexes containing mLin-7.  相似文献   
179.
123I-Labeled paclitaxel, [123I]-1 was prepared by electrophilic aromatic radioiodination of 3'-N-(p-trimethylstannylbenzoyl)-3'-debenzoylpaclitaxel 2 with 123I- in the presence of peracetic acid.  相似文献   
180.
To understand the mechanism underlying toluene resistance of a toluene-tolerant bacterium, Pseudomonas putida GM73, we carried out Tn5 mutagenesis and isolated eight toluene-sensitive mutants. None of the mutants grew in the presence of 20% (vol/vol) toluene in growth medium but exhibited differential sensitivity to toluene. When wild-type cells were treated with toluene (1% [vol/vol]) for 5 min, about 2% of the cells could form colonies. In the mutants Ttg1, Ttg2, Ttg3, and Ttg8, the same treatment killed more than 99.9999% of cells (survival rate, <10−6). In Ttg4, Ttg5, Ttg6, and Ttg7, about 0.02% of cells formed colonies. We cloned the Tn5-inserted genes, and the DNA sequence flanking Tn5 was determined. From comparison with a sequence database, putative protein products encoded by ttg genes were identified as follows. Ttg1 and Ttg2 are ATP binding cassette (ABC) transporter homologs; Ttg3 is a periplasmic linker protein of a toluene efflux pump; both Ttg4 and Ttg7 are pyruvate dehydrogenase; Ttg5 is a dihydrolipoamide acetyltransferase; and Ttg7 is the negative regulator of the phosphate regulon. The sequences deduced from ttg8 did not show a significant similarity to any DNA or proteins in sequence databases. Characterization of these mutants and identification of mutant genes suggested that active efflux mechanism and efficient repair of damaged membranes were important in toluene resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号