首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   5篇
  国内免费   4篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1955年   1篇
  1954年   4篇
  1950年   1篇
  1934年   1篇
  1916年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
61.
Two acorn barnacles, Tetraclita japonica japonica and Tetraclita japonica formosana, have been recently reclassified as two subspecies, because they are morphologically similar and genetically indistinguishable in mitochondrial DNA sequences. The two barnacles are distinguishable by parietes colour and exhibit parapatric distributions, coexisting in Japan, where T. j. formosana is very low in abundance. Here we investigated the genetic differentiation between the subspecies using 209 polymorphic amplified fragment length polymorphism markers and 341 individuals from 12 locations. The subspecies are genetically highly differentiated (ΦCT = 0.267). Bayesian analysis and principal component analysis indicate the presence of hybrids in T. j. formosana samples from Japan. Strong differentiation between the northern and southern populations of T. j. japonica was revealed, and a break between Taiwan and Okinawa was also found in T. j. formosana. The differentiation between the two taxa at individual loci does not deviate from neutral expectation, suggesting that the oceanographic pattern which restricts larval dispersal is a more important factor than divergent selection in maintaining genetic and phenotypic differentiation. The T. j. formosana in Japan are probably recent migrants from Okinawa, and their presence in Japan may represent a poleward range shift driven by global warming. This promotes hybridization and might lead to a breakdown of the boundary between the subspecies. However, both local adaptation and larval dispersal are crucial in determining the population structure within each subspecies. Our study provides new insights into the interplay of local adaptation and dispersal in determining the distribution and genetic structure of intertidal biota and the biogeography of the northwestern Pacific.  相似文献   
62.
The calcyclin-binding protein (CacyBP) binds calcyclin (S100A6) at physiological levels of [Ca(2+)] and is highly expressed in brain neurons. Subcellular localization of CacyBP was examined in neurons and neuroblastoma NB-2a cells at different [Ca(2+)](i). Immunostaining indicates that CacyBP is present in the cytoplasm of unstimulated cultured neurons in which resting [Ca(2+)](i) is known to be approximately 50 nm. When [Ca(2+)](i) was increased to above 300 nm by KCl treatment, the immunostaining was mainly apparent as a ring around the nucleus. Such perinuclear localization of CacyBP was observed in untreated neuroblastoma NB-2a cells in which [Ca(2+)](i) is approximately 120 nm. An additional increase in [Ca(2+)](i) to above 300 nm by thapsigargin treatment did not change CacyBP localization. However, when [Ca(2+)](i) in NB-2a cells dropped to 70 nm, because of BAPTA/AM treatment, perinuclear localization was diminished. Ca(2+)-induced translocation of CacyBP was confirmed by immunogold electron microscopy and by fluorescence of NB-2a cells transfected with an EGFP-CacyBP vector. Recombinant CacyBP can be phosphorylated by protein kinase C in vitro. In untreated neuroblastoma NB-2a cells, CacyBP is phosphorylated on a serine residue(s), but exists in the dephosphorylated form in BAPTA/AM-treated cells. Thus, phosphorylation of CacyBP occurs in the same [Ca(2+)](i) range that leads to its perinuclear translocation.  相似文献   
63.
S100A6 (calcyclin), a small calcium-binding protein from the S100 family, interacts with several target proteins in a calcium-regulated manner. One target is Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP), a component of a novel pathway of beta-catenin ubiquitination. A recently discovered yeast homolog of CacyBP/SIP, Sgt1, associates with Skp1 and regulates its function in the Skp1/Cullin1/F-box complex ubiquitin ligase and in kinetochore complexes. S100A6-binding domain of CacyBP/SIP is in its C-terminal region, where the homology between CacyBP/SIP and Sgt1 is the greatest. Therefore, we hypothesized that Sgt1, through its C-terminal region, interacts with S100A6. We tested this hypothesis by performing affinity chromatography and chemical cross-linking experiments. Our results showed that Sgt1 binds to S100A6 in a calcium-regulated manner and that the S100A6-binding domain in Sgt1 is comprised of 71 C-terminal residues. Moreover, S100A6 does not influence Skp1-Sgt1 binding, a result suggesting that separate Sgt1 domains are responsible for interactions with S100A6 and Skp1. Sgt1 binds not only to S100A6 but also to S100B and S100P, other members of the S100 family. The interaction between S100A6 and Sgt1 is likely to be physiologically relevant because both proteins were co-immunoprecipitated from HEp-2 cell line extract using monoclonal anti-S100A6 antibody. Phosphorylation of the S100A6-binding domain of Sgt1 by casein kinase II was inhibited by S100A6, a result suggesting that the role of S100A6 binding is to regulate the phosphorylation of Sgt1. These findings suggest that protein ubiquitination via Sgt1-dependent pathway can be regulated by S100 proteins.  相似文献   
64.
Here, two temperature sensitive promoters, P2 and P7, isolated from Bacillus subtilis, were characterized. The production of beta-galactosidase driven by these promoters was much higher at 45 degrees C than that at 37 degrees C both in Escherichia coli and B. subtilis and that the P2 promoter showed higher expression strength in B. subtilis at 45 degrees C. Thereby, an efficient temperature-inducible expression system was constructed by using P2 promoter in B. subtilis. Thus, we isolated and characterized a newly temperature inducible promoter and exploited it as a potential expression element in B. subtilis.  相似文献   
65.
66.
Scl/Tal1 confers hemogenic competence and prevents ectopic cardiomyogenesis in embryonic endothelium by unknown mechanisms. We discovered that Scl binds to hematopoietic and cardiac enhancers that become epigenetically primed in multipotent cardiovascular mesoderm, to regulate the divergence of hematopoietic and cardiac lineages. Scl does not act as a pioneer factor but rather exploits a pre‐established epigenetic landscape. As the blood lineage emerges, Scl binding and active epigenetic modifications are sustained in hematopoietic enhancers, whereas cardiac enhancers are decommissioned by removal of active epigenetic marks. Our data suggest that, rather than recruiting corepressors to enhancers, Scl prevents ectopic cardiogenesis by occupying enhancers that cardiac factors, such as Gata4 and Hand1, use for gene activation. Although hematopoietic Gata factors bind with Scl to both activated and repressed genes, they are dispensable for cardiac repression, but necessary for activating genes that enable hematopoietic stem/progenitor cell development. These results suggest that a unique subset of enhancers in lineage‐specific genes that are accessible for regulators of opposing fates during the time of the fate decision provide a platform where the divergence of mutually exclusive fates is orchestrated.  相似文献   
67.

Background

Cells with homologous recombination (HR) deficiency, most notably caused by mutations in the BRCA1 or BRCA2 genes, are sensitive to PARP inhibition. Microsatellite instability (MSI) accounts for 10-15% of colorectal cancer (CRC) and is hypothesized to lead to HR defects due to altered expression of Mre11, a protein required for double strand break (DSB) repair. Indeed, others have reported that PARP inhibition is efficacious in MSI CRC.

Methods

Here we examine the response to niraparib, a potent PARP-1/PARP-2 inhibitor currently under clinical evaluation, in MSI versus microsatellite stable (MSS) CRC cell lines in vitro and in vivo. We compiled a large panel of MSI and MSS CRC cell lines and evaluated the anti-proliferative activity of niraparib. In addition to testing single agent cytotoxic activity of niraparib, we also tested irinotecan (or SN-38, the active metabolite of irinotecan) activity alone and in combination with niraparib in vitro and in vivo.

Results

In contrast to earlier reports, MSI CRC cell lines were not more sensitive to niraparib than MSS CRC cell lines¸ suggesting that the MSI phenotype does not sensitize CRC cell lines to PARP inhibition. Moreover, even the most sensitive MSI cell lines had niraparib EC50s greater than 10 fold higher than BRCA-deficient cell lines. However, MSI lines were more sensitive to SN-38 than MSS lines, consistent with previous findings. We have also demonstrated that combination of niraparib and irinotecan was more efficacious than either agent alone in both MSI and MSS cell lines both in vitro and in vivo, and that niraparib potentiates the effect of irinotecan regardless of MSI status.

Conclusions

Our results support the clinical evaluation of this combination in all CRC patients, regardless of MSI status.  相似文献   
68.
69.
ABSTRACT

Indirect immunofluorescence performed using sections of actively growing maize root apices fixed and then embedded in low-melting-point Steedman's wax has proved efficient in revealing the arrangements and reorganizations of motility-related cytoskeletal elements which are associated with root cell development and tissue differentiation. This powerful, yet relatively simple, technique shows that specific rearrangements of both microtubular (MT) and actin microfilament (MF) arrays occur in cells as they leave the meristem and traverse the transitional region interpolated between meristem and elongation region. Cytoskeletal and growth analyses have identified the transition zone as critical for both cell and root development; it is in this zone that cell growth is channelled, by the cytoskeleton, into a strictly polarized mode which enables root tips to extend rapidly through the soil in search of water and nutrients. An integrated cytoskeletal network is crucial for both the cytomorphogenesis of individual cells and the overall morphogenesis of the plant body. The latter process can be viewed as a reflection of the tight control which cytoskeletal networks exert not only over cell division planes in the cells within meristematic apices but also over the orientation of cell growth in the meristem and elsewhere. Endoplasmic MTs interconnecting the plasma membrane with the nucleus are suggested to be involved in cell division control; they may also act as a two-way cytoskeletal communication channel for signals passing to and fro between the extracellular environment and the genome. Moreover, the dynamism of endoplasmic MTs exerts direct effects on chromatin structure and the accompanying nuclear architecture and hence can help exert a cellular level of control over cell growth and cell cycle progression. Because the inherent dynamic instability of MTs depends on the concentration of tubulin dimers within the cytoplasm, we propose that when asymmetric cell division occurs, it will result in two daughter cells which differ in the turnover rates of their MTs. This phenomenon could be responsible for different cell fates of daughter plant cells produced by such cell divisions.  相似文献   
70.
Elucidating the mechanisms of axonal transport has shown to be very important in determining how defects in long distance transport affect different neurological diseases. Defects in this essential process can have detrimental effects on neuronal functioning and development. We have developed a dissection protocol that is designed to expose the Drosophila larval segmental nerves to view axonal transport in real time. We have adapted this protocol for live imaging from the one published by Hurd and Saxton (1996) used for immunolocalizatin of larval segmental nerves. Careful dissection and proper buffer conditions are critical for maximizing the lifespan of the dissected larvae. When properly done, dissected larvae have shown robust vesicle transport for 2-3 hours under physiological conditions. We use the UAS-GAL4 method 1 to express GFP-tagged APP or synaptotagmin vesicles within a single axon or many axons in larval segmental nerves by using different neuronal GAL4 drivers. Other fluorescently tagged markers, for example mitochrondria (MitoTracker) or lysosomes (LysoTracker), can be also applied to the larvae before viewing. GFP-vesicle movement and particle movement can be viewed simultaneously using separate wavelengths.Download video file.(34M, mov)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号