首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   8篇
  2010年   8篇
  2009年   8篇
  2008年   4篇
  2007年   4篇
  2006年   11篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1983年   1篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1973年   4篇
  1972年   2篇
  1966年   1篇
排序方式: 共有142条查询结果,搜索用时 140 毫秒
81.
82.
Applied Biochemistry and Microbiology - The use of specialized cultures of microorganisms and biological products based on them is the most acceptable way to solve such topical problems as an...  相似文献   
83.
Proteolytic degradation of autoantigens is of prime importance in current biochemistry and immunology. The most fundamental issue in this field is the functional role of peptides produced when the specificity of hydrolysis changes during the shift from health to disease and from normal state to pathology. The identification of specific peptide fragments in many cases proposes the diagnostic and prognostic criterion in the pathology progression. The aim of this work is comparative study of the degradation peculiarities of one of the main neuroantigen, myelin basic protein by proteases, activated during progress of pathological demyelinating process, and by proteasome of different origin. The comparison of specificity of different studied biocatalysts gives reason to discuss the critical change in the set of myelin basic protein fragments capable to be presented by major histocompatibility complex class I during neurodegeneration, which can promote the progress of autoimmune pathological process.  相似文献   
84.
Abstract: Exceptionally abundant specimens of Conularia aff. desiderata Hall occur in multiple marine obrution deposits, in a single sixth‐order parasequence composed of argillaceous and silty very fine sandstone, in the Otsego Member of the Mount Marion Formation (Middle Devonian, Givetian) in eastern New York State, USA. Associated fossils consist mostly of rhynchonelliform brachiopods but also include bivalve molluscs, orthoconic nautiloids, linguliform brachiopods and gastropods. Many of the brachiopods, bivalve molluscs and conulariids have been buried in situ. Conulariids buried in situ are oriented with their aperture facing obliquely upward and with their long axis inclined at up to 87 degree to bedding. Most specimens are solitary, but some occur in V‐like pairs or in radial clusters consisting of three specimens, with the component specimens being about equally long or (less frequently) substantially different in length. The compacted apical end of Conularia buried in situ generally rests upon argillaceous sandstone. With one possible exception, none of the examined specimens terminates in a schott (apical wall), and internal schotts appear to be absent. The apical ends of specimens in V‐like pairs and radial clusters show no direct evidence of interconnection of their periderms. The apical, middle or apertural region of some inclined specimens abuts or is in close lateral proximity to a recumbent conulariid or to one or more spiriferid brachiopods, some of which have been buried in their original life orientation. The azimuthal bearings of Conularia and nautiloid long axes and the directions in which conulariids open are nonrandom, with conulariids being preferentially aligned between 350 and 50 degree and with their apertural end facing north‐east, and nautiloids being preferentially aligned between 30 and 70 degree. Otsego Member Conularia were erect or semi‐erect, epifaunal or partially infaunal animals, the apical end of which rested upon very fine bottom sediment. The origin of V‐like pairs and radial clusters remains enigmatic, but it is probable that production of schotts was not a regular feature of this animal’s life history. Finally, conulariids and associated fauna were occasionally smothered by distal storm deposits, under the influence of relatively weak bottom currents.  相似文献   
85.
Abstract.  1. Many cannibalistic species are also intra-guild predators. Such predators will often face the decision whether to consume a conspecific or a heterospecific prey from the same guild. This decision may depend on the relative quality and abundance of the prey but also on other factors such as relatedness by descent, prey-specific defence and the probability of the victim harbouring shared diseases.
2. Here, intra-guild interactions among two cannibalistic species of predatory mites, Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae) that belong to closely related genera were studied.
3. Individuals of I. degenerans were offered a diet of conspecifics or heterospecifics. Because I. degenerans is capable of recognising kin individuals from non-kin, and they were exclusively offered conspecifics that were either distantly related or non-kin, it was expected that it would not refrain from cannibalising for reasons of possible relatedness.
4. When corrected for numbers of victims eaten, survival, and juvenile development of predators fed with intra-guild prey was higher than that of cannibals. This was probably caused by a higher quality of heterospecific victims, even though conspecific victims were larger and therefore potentially contained more food. This led to the prediction that the predators should strongly prefer heterospecific prey. This was indeed borne out in independent choice experiments. Thus, the choice of predators between heterospecific and conspecific prey is not only affected by avoidance of consuming conspecifics, but also by relative prey quality.  相似文献   
86.
Abstract.  Males and females of the burrower bug species Scaptocoris castanea Perty and Scaptocoris carvalhoi Becker emit stridulatory signals when on the roots of soybean. The substrate-borne components of the signal can be recorded on the plant but not on the surrounding soil surface. The stridulatory apparatus is composed of the tergal plectrum (lima) and the stridulitrum (stridulatory vein) on the underside of the hind wings. The male plectrum has one ridge and the female lima has 13 ridges. Stridulitra of different species differ in the length and in the number of teeth. Rubbing of plectrum (lima) ridges over the stridulitrum in one or both directions produces pulse trains. The velocity of signals that are recorded less than 0.5 cm from the bug is below 0.013 mm s−1 on the soil and below 0.066 mm s−1 on the leaf surface. Broadband spectra have a dominant frequency of less than 1 kHz and subdominant peaks extending up to 7 kHz. The dominant frequency of the stridulatory signal transmitted through a plant decreases together with the proportion of its higher frequency spectral components. Signals are attenuated for 3–9 dB cm−1 when transmitted through the soil or soybean leaf and for approximately 1 dB cm−1 when transmitted through soybean stem.  相似文献   
87.
88.
Winter cress (Barbarea vulgaris) is resistant to a range of insect species. Some B. vulgaris genotypes are resistant, whereas others are susceptible, to herbivory by flea beetle larvae (Phyllotreta nemorum). Metabolites involved in resistance to herbivory by flea beetles were identified using an ecometabolomic approach. An F2 population representing the whole range from full susceptibility to full resistance to flea beetle larvae was generated by a cross between a susceptible and a resistant B. vulgaris plant. This F2 offspring was evaluated with a bioassay measuring the ability of susceptible flea beetle larvae to survive on each plant. Metabolites that correlated negatively with larvae survival were identified through correlation, cluster, and principal component analyses. Two main clusters of metabolites that correlate negatively with larvae survival were identified. Principal component analysis grouped resistant and susceptible plants as well as correlated metabolites. Known saponins, such as hederagenin cellobioside and oleanolic acid cellobioside, as well as two other saponins correlated significantly with plant resistance. This study shows the potential of metabolomics to identify bioactive compounds involved in plant defense.Plants are sessile organisms that have developed various strategies to adapt to or counteract abiotic and biotic stress. The ability to accumulate low-molecular-weight bioactive compounds, often referred to as allelochemicals, secondary metabolites, or bioactive natural products, provides a chemical defense against herbivorous insects used by plants. As a result of natural selection, insects often develop mechanisms to adapt to such compounds and eventually manage to break the resistance.The interaction between Barbarea vulgaris (Brassicaceae) and the flea beetle Phyllotreta nemorum (Coleoptera: Chrysomelidae) is a unique model system to study chemical defenses in plants and counteradaptations in insects (Nielsen, 1997a; de Jong et al., 2000; Agerbirk et al., 2001, 2003b; Nielsen and de Jong, 2005). B. vulgaris, a biennial or short-lived perennial wild crucifer (MacDonald and Cavers, 1991), is polymorphic with respect to insect resistance: the pubescent P-type is susceptible to all known flea beetle genotypes, whereas the glabrous G-type is resistant to most common genotypes of the insect (Nielsen, 1997a, 1997b; Agerbirk et al., 2003a). In contrast, P. nemorum is polymorphic with respect to plant defenses (Breuker et al., 2005; Nielsen and de Jong, 2005).B. vulgaris has a potential as an oil crop for use at northern latitudes (Börjesdotter, 1999) and is considered to be an important genetic resource for food and agriculture (International Treaty on Plant Genetic Resources for Food and Agriculture; ftp://ftp.fao.org/ag/cgrfa/it/ITPGRe.pdf). It has been used for salads and garnishes as well as a medicinal plant (Senatore et al., 2000). B. vulgaris has a wide native distribution area (Eurasia) and is furthermore naturalized in North America, Africa, Australia, New Zealand, and Japan as a weed (Hegi, 1958; MacDonald and Cavers, 1991; Tachibana et al., 2002). The subspecies arcuata is by far the most common Barbarea taxon in Denmark and comprises two morphologically, biochemically, and cytologically deviating genotypes, P and G, which differ by glucosinolate profiles, flea beetle resistance, and leaf pubescence (Agerbirk et al., 2003b; Fig. 1). B. vulgaris is a diploid; the G-type has 2n = 16 chromosomes, while the P-type has 2n = 16 or 2n = 18 chromosomes (Ørgaard and Linde-Laursen, 2008). B. vulgaris is phylogenetically positioned between Arabidopsis (Arabidopsis thaliana) and allopolyploid oil seed rape (Brassica napus; Bailey et al., 2006). Accordingly, research on plant-insect interaction in B. vulgaris may be applied to B. napus.Open in a separate windowFigure 1.Rosette leaves of P- and G-types of B. vulgaris subspecies arcuata. The P-type has hairs, while the G-type does not.Glucosinolates constitute a group of defense compounds present in crucifers and play a key role in host selection by crucifer specialists (Renwick, 2002). These compounds are feeding and oviposition stimulants for a number of specialist insects, which have become adapted to such compounds as an outcome of long-standing coevolutionary interactions with host plants containing them (Renwick, 2002; Thompson, 2005). Therefore, glucosinolates no longer offer efficient protection against many specialist insects, and the relationship between glucosinolate profiles of plants and their suitability as food for insects is not simple (Nielsen et al., 2001; Poelman et al., 2008; van Leur et al., 2008). The P-type B. vulgaris contains the R-isomer of 2-hydroxy-2-phenylethylglucosinolate, whereas the G-type contains the S-isomer. However, the differences in glucosinolate profiles between the P- and G-types are not related to resistance to flea beetles (Agerbirk et al., 2003b).As a putative response to renewed selection pressure from herbivorous insects, a number of crucifers have evolved a second generation of defense secondary compounds (e.g. cucurbitacins in Iberis species, cardenolides in Cheirantus and Erysimum species, and saponins in B. vulgaris). These compounds are feeding deterrents for a number of insect species (Nielsen, 1978; Renwick, 2002; Shinoda et al., 2002; Agerbirk et al., 2003a). Until now, Barbarea is the only crucifer known to contain saponins. Two saponins, oleanolic acid cellobioside (3-O-β-cellobiosyloleanolic acid) and hederagenin cellobioside (3-O-β-cellobiosylhederagenin), have been identified in B. vulgaris (Shinoda et al., 2002; Agerbirk et al., 2003a). The restricted distribution of such saponins in crucifers suggests that they originated later than the glucosinolates, which have a much wider distribution in the family.Saponins are triterpenoid glycosides widely distributed in higher plants (Hostettmann and Marston, 1995; Sparg et al., 2004; Vincken et al., 2007). They are constituents of many plant drugs and folk medicines and possess a wide range of biological activities, including antifungal, antibacterial, molluscicidal, and insecticidal activities (Hostettmann and Marston, 1995; Sparg et al., 2004; Chwalek et al., 2006; Güçlü-Ustündağ and Mazza, 2007; Gauthier et al., 2009). The toxicity of saponins to fungi and insects is thought to be a result of their ability to form complexes with sterols in the plasma membrane, thus destroying the cellular semipermeability and leading to cell death. Although saponins are toxic to cold-blooded animals, their oral toxicity to mammals is low (for review, see Hostettmann and Marston, 1995; Sparg et al., 2004; Güçlü-Ustündağ and Mazza, 2007).Hederagenin cellobioside has been identified as an active defense compound of B. vulgaris against the world-wide pest diamondback moth (Shinoda et al., 2002), which has become resistant to most insecticides. Oleanolic acid cellobioside concentration has been shown to correlate with resistance of B. vulgaris to the diamondback moth (Agerbirk et al., 2003a). This compound is present in the resistant G-type plant, and its concentration declines in autumn at the same time as the decline in resistance toward diamondback moth (Agerbirk et al., 2001, 2003b). The impact of the two saponins on defense against flea beetles, a major pest in oil seed rape, has not been reported previously.The objective of this study was to develop an unbiased strategy to identify metabolites that correlate with resistance to flea beetle larvae in B. vulgaris and to provide knowledge that may facilitate more efficient and sustainable breeding for resistance toward insect pests. The results presented in this study are significant for understanding chemical plant defense against insects and may be utilized in future crop protection breeding by screening for the presence of similar bioactive compounds, biosynthetic enzymes, and genetic markers or transfer of resistance components to crop plants.  相似文献   
89.
90.
Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-β-d-Glc hederagenin strongly deterred feeding, while 3-O-β-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis.Triterpenoid saponins are a heterogeneous group of bioactive metabolites found in many species of the plant kingdom. The general conception is that saponins are involved in plant defense against antagonists such as fungi (Papadopoulou et al., 1999), mollusks (Nihei et al., 2005), and insects (Dowd et al., 2011). Saponins consist of a triterpenoid aglycone (sapogenin) linked to usually one or more sugar moieties. This combination of a hydrophobic sapogenin and hydrophilic sugars makes saponins amphiphilic and enables them to integrate into biological membrane systems. There, they form complexes with membrane sterols and reorganize the lipid bilayer, which may result in membrane damage (Augustin et al., 2011).However, our knowledge of the biosynthesis of saponins, and the genes and enzymes involved, is limited. The current conception is that the precursor 2,3-oxidosqualene is cyclized to a limited number of core structures, which are subsequently decorated with functional groups, and finally activated by adding glycosyl groups (Augustin et al., 2011). These key steps are considered to be catalyzed by three multigene families: (1) oxidosqualene cyclases (OSCs) forming the core structures, (2) cytochromes P450 adding the majority of functional groups, and (3) family 1 glycosyltransferases (UGTs) adding sugars. This allows for a vast structural complexity, some of which probably evolved by sequential gene duplication followed by functional diversification (Osbourn, 2010). A major challenge is thus to understand the processes of saponin biosynthesis, which structural variants of saponins play a role in defense against biotic antagonists, and how saponin biosynthesis evolved in different plant taxa. This knowledge is also of interest for biotechnological production and the use of saponins as protection agents against agricultural pests as well as for pharmacological and industrial uses as bactericides (De Leo et al., 2006), anticancerogens (Musende et al., 2009), and adjuvants (Sun et al., 2009).Barbarea vulgaris (winter cress) is a wild crucifer from the Cardamineae tribe of the Brassicaceae family. It is the only species in this economically important family known to produce saponins. B. vulgaris has further diverged into two separate evolutionary lineages (types; Hauser et al., 2012; Toneatto et al., 2012) that produce different saponins, glucosinolates, and flavonoids (Agerbirk et al., 2003b; Dalby-Brown et al., 2011; Kuzina et al., 2011). Saponins of the one plant type make plants resistant to the yellow-striped flea beetle (Phyllotreta nemorum), diamondback moth (Plutella xylostella), and other important crucifer specialist herbivores (Renwick, 2002); therefore, it has been suggested to utilize such plants as a trap crop to diminish insect damage (Badenes-Perez et al., 2005). The other plant type is not resistant to these herbivores. B. vulgaris, therefore, is ideal as a model species to study saponin biosynthesis, insect resistance, and its evolution, as we can contrast genes, enzymes, and their products between closely related but divergent plant types.Insect resistance of the one plant type, called G because it has glabrous leaves, correlates with the content of especially hederagenin cellobioside, oleanolic acid cellobioside, 4-epi-hederagenin cellobioside, and gypsogenin cellobioside (Shinoda et al., 2002; Agerbirk et al., 2003a; Kuzina et al., 2009; Fig. 1). These saponins are absent in the susceptible plant type, called P because it has pubescent leaves, which contains saponins of unknown structures and function (Kuzina et al., 2011). The sapogenins (aglycones) of the resistance-causing saponins hederagenin and oleanolic acid cellobioside do not deter feeding by P. nemorum, which highlights the importance of glycosylation of saponins for resistance (Nielsen et al., 2010). Therefore, the presence or absence of sapogenin glycosyltransferases could be a determining factor for the difference in resistance between the insect resistant G-type and the susceptible P-type of B. vulgaris.Open in a separate windowFigure 1.Chemical structures of the four known G-type B. vulgaris saponins that correlate with resistance to P. nemorum and other herbivores. The cellobioside and sapogenin parts of the saponin are underlined, and relevant carbon positions are numbered.Some P. nemorum genotypes are resistant to the saponin defense of B. vulgaris (Nielsen, 1997b, 1999). Resistance is coded by dominant R genes (Nielsen et al., 2010; Nielsen 2012): larvae and adults of resistant genotypes (RR or Rr) are able to feed on G-type foliage and utilize B. vulgaris as host plant (de Jong et al., 2009), whereas larvae of the susceptible genotype (rr) die and adult beetles stop feeding on G-type foliage. Larvae and adults of all known P. nemorum genotypes can feed on P-type B. vulgaris (Fig. 2).Open in a separate windowFigure 2.Feeding behavior of adult P. nemorum that are either susceptible (ST) or resistant (AK) toward the saponin-based defense of G-type B. vulgaris; the P-type produces different saponins and is not resistant against P. nemorum. Potential feeding is shown by green arrows, and termination of feeding briefly after initiation is indicated by a red dashed arrow. Larvae of the ST line die if fed on G-type plants.In this study, we asked which enzymes are involved in glucosylation of sapogenins in B. vulgaris, whether saponins with a single C3 glucosyl group are biologically active, and whether the difference between the insect resistant and susceptible types of B. vulgaris is caused by different glucosyltransferases.We report the identification of two UDP-glycosyltransferases, UGT73C10 and UGT73C11, which have high catalytic activity and substrate specificity and regiospecificity for catalyzing 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. The products, 3-O-β-d-glucopyranosyl hederagenin and 3-O-β-d-glucopyranosyl oleanolic acid, are predicted precursors of hederagenin and oleanolic acid cellobioside, respectively. The expression patterns of UGT73C10 and UGT73C11 in different organs of B. vulgaris correlate with saponin abundance, and monoglucosylated sapogenins, especially 3-O-β-d-glucopyranosyl hederagenin, deter feeding by P. nemorum. Our results thus show that glucosylation with even a single glucosyl group activates the resistance function of these sapogenins. However, since the UGTs are present and active in both the insect-resistant and -susceptible types of B. vulgaris, we cannot explain the difference in resistance by different glucosylation abilities. Instead, the difference between the susceptible and resistant types must be determined at an earlier stage in saponin biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号