首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   8篇
  2010年   8篇
  2009年   8篇
  2008年   4篇
  2007年   4篇
  2006年   11篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1983年   1篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1973年   4篇
  1972年   2篇
  1966年   1篇
排序方式: 共有142条查询结果,搜索用时 203 毫秒
71.
72.
When glucose is substituted for sucrose in the fermentation medium for Streptomyces antibioticus, the pH of the cultural broth becomes more acidic, the rate of protein synthesis in the mycelium rises, and the rate of oleandomycin synthesis decreases abruptly. The dynamics of cAMP (cyclic monophosphate) accumulation was studied in the process of biosynthesis by the culture in different media. Most of the synthesized cAMP (80-90%) was shown to be excreted into the medium. Glucose stimulates cAMP synthesis and excretion from the mycelium by a factor of 1.5-3. No distinct correlation was found between cAMP content in S. antibioticus cells and the level of oleandomycin biosynthesis. A correlation between changes in the concentration of exocellular cAMP and protein synthesis in the mycelium suggests that the excreted cAMP may be involved in regulating the growth of the culture producing the antibiotic.  相似文献   
73.
Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-β-d-Glc hederagenin strongly deterred feeding, while 3-O-β-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis.Triterpenoid saponins are a heterogeneous group of bioactive metabolites found in many species of the plant kingdom. The general conception is that saponins are involved in plant defense against antagonists such as fungi (Papadopoulou et al., 1999), mollusks (Nihei et al., 2005), and insects (Dowd et al., 2011). Saponins consist of a triterpenoid aglycone (sapogenin) linked to usually one or more sugar moieties. This combination of a hydrophobic sapogenin and hydrophilic sugars makes saponins amphiphilic and enables them to integrate into biological membrane systems. There, they form complexes with membrane sterols and reorganize the lipid bilayer, which may result in membrane damage (Augustin et al., 2011).However, our knowledge of the biosynthesis of saponins, and the genes and enzymes involved, is limited. The current conception is that the precursor 2,3-oxidosqualene is cyclized to a limited number of core structures, which are subsequently decorated with functional groups, and finally activated by adding glycosyl groups (Augustin et al., 2011). These key steps are considered to be catalyzed by three multigene families: (1) oxidosqualene cyclases (OSCs) forming the core structures, (2) cytochromes P450 adding the majority of functional groups, and (3) family 1 glycosyltransferases (UGTs) adding sugars. This allows for a vast structural complexity, some of which probably evolved by sequential gene duplication followed by functional diversification (Osbourn, 2010). A major challenge is thus to understand the processes of saponin biosynthesis, which structural variants of saponins play a role in defense against biotic antagonists, and how saponin biosynthesis evolved in different plant taxa. This knowledge is also of interest for biotechnological production and the use of saponins as protection agents against agricultural pests as well as for pharmacological and industrial uses as bactericides (De Leo et al., 2006), anticancerogens (Musende et al., 2009), and adjuvants (Sun et al., 2009).Barbarea vulgaris (winter cress) is a wild crucifer from the Cardamineae tribe of the Brassicaceae family. It is the only species in this economically important family known to produce saponins. B. vulgaris has further diverged into two separate evolutionary lineages (types; Hauser et al., 2012; Toneatto et al., 2012) that produce different saponins, glucosinolates, and flavonoids (Agerbirk et al., 2003b; Dalby-Brown et al., 2011; Kuzina et al., 2011). Saponins of the one plant type make plants resistant to the yellow-striped flea beetle (Phyllotreta nemorum), diamondback moth (Plutella xylostella), and other important crucifer specialist herbivores (Renwick, 2002); therefore, it has been suggested to utilize such plants as a trap crop to diminish insect damage (Badenes-Perez et al., 2005). The other plant type is not resistant to these herbivores. B. vulgaris, therefore, is ideal as a model species to study saponin biosynthesis, insect resistance, and its evolution, as we can contrast genes, enzymes, and their products between closely related but divergent plant types.Insect resistance of the one plant type, called G because it has glabrous leaves, correlates with the content of especially hederagenin cellobioside, oleanolic acid cellobioside, 4-epi-hederagenin cellobioside, and gypsogenin cellobioside (Shinoda et al., 2002; Agerbirk et al., 2003a; Kuzina et al., 2009; Fig. 1). These saponins are absent in the susceptible plant type, called P because it has pubescent leaves, which contains saponins of unknown structures and function (Kuzina et al., 2011). The sapogenins (aglycones) of the resistance-causing saponins hederagenin and oleanolic acid cellobioside do not deter feeding by P. nemorum, which highlights the importance of glycosylation of saponins for resistance (Nielsen et al., 2010). Therefore, the presence or absence of sapogenin glycosyltransferases could be a determining factor for the difference in resistance between the insect resistant G-type and the susceptible P-type of B. vulgaris.Open in a separate windowFigure 1.Chemical structures of the four known G-type B. vulgaris saponins that correlate with resistance to P. nemorum and other herbivores. The cellobioside and sapogenin parts of the saponin are underlined, and relevant carbon positions are numbered.Some P. nemorum genotypes are resistant to the saponin defense of B. vulgaris (Nielsen, 1997b, 1999). Resistance is coded by dominant R genes (Nielsen et al., 2010; Nielsen 2012): larvae and adults of resistant genotypes (RR or Rr) are able to feed on G-type foliage and utilize B. vulgaris as host plant (de Jong et al., 2009), whereas larvae of the susceptible genotype (rr) die and adult beetles stop feeding on G-type foliage. Larvae and adults of all known P. nemorum genotypes can feed on P-type B. vulgaris (Fig. 2).Open in a separate windowFigure 2.Feeding behavior of adult P. nemorum that are either susceptible (ST) or resistant (AK) toward the saponin-based defense of G-type B. vulgaris; the P-type produces different saponins and is not resistant against P. nemorum. Potential feeding is shown by green arrows, and termination of feeding briefly after initiation is indicated by a red dashed arrow. Larvae of the ST line die if fed on G-type plants.In this study, we asked which enzymes are involved in glucosylation of sapogenins in B. vulgaris, whether saponins with a single C3 glucosyl group are biologically active, and whether the difference between the insect resistant and susceptible types of B. vulgaris is caused by different glucosyltransferases.We report the identification of two UDP-glycosyltransferases, UGT73C10 and UGT73C11, which have high catalytic activity and substrate specificity and regiospecificity for catalyzing 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. The products, 3-O-β-d-glucopyranosyl hederagenin and 3-O-β-d-glucopyranosyl oleanolic acid, are predicted precursors of hederagenin and oleanolic acid cellobioside, respectively. The expression patterns of UGT73C10 and UGT73C11 in different organs of B. vulgaris correlate with saponin abundance, and monoglucosylated sapogenins, especially 3-O-β-d-glucopyranosyl hederagenin, deter feeding by P. nemorum. Our results thus show that glucosylation with even a single glucosyl group activates the resistance function of these sapogenins. However, since the UGTs are present and active in both the insect-resistant and -susceptible types of B. vulgaris, we cannot explain the difference in resistance by different glucosylation abilities. Instead, the difference between the susceptible and resistant types must be determined at an earlier stage in saponin biosynthesis.  相似文献   
74.
The concentrations of cortisol, its precursors, and its active form in human blood, as well as its relationship to changes in the concentration of central and peripheral hormonal regulators (a total of 36 parameters), were studied in healthy male volunteers aged 18–72 years. The study demonstrated a significant decrease in the blood concentrations of unutilized cortisol precursors (pregnenolone and progesterone) with age accompanied by the maintenance of constant total and free cortisol concentrations. We found an age-related decrease in the adrenocorticotropic hormone (ACTH) level that is a well-known pituitary stimulant of cortisol and cortisol precursor synthesis in the adrenal glands. The cortisol and ACTH levels in the age interval studied exhibited different correlations with the central and peripheral regulators of the hormonal axes. The conclusion was drawn that the cortisol level remains stable with increasing age in men, despite the decrease in the steroidogenic activity and blood ACTH level. This may be due to the imbalance in the regulation of cortisol and ACTH production by the central and peripheral regulators, especially by the hormones of the reproductive and somatotrophic axes.  相似文献   
75.
76.
77.
Proteolytic degradation of autoantigens is of prime importance in current biochemistry and immunology. The most fundamental issue in this field is the functional role of peptides produced when the specificity of hydrolysis changes during the shift from health to disease and from normal state to pathology. The identification of specific peptide fragments in many cases proposes the diagnostic and prognostic criterion in the pathology progression. The aim of this work is comparative study of the degradation peculiarities of one of the main neuroantigen, myelin basic protein by proteases, activated during progress of pathological demyelinating process, and by proteasome of different origin. The comparison of specificity of different studied biocatalysts gives reason to discuss the critical change in the set of myelin basic protein fragments capable to be presented by major histocompatibility complex class I during neurodegeneration, which can promote the progress of autoimmune pathological process.  相似文献   
78.
79.
Abstract.  1. Many cannibalistic species are also intra-guild predators. Such predators will often face the decision whether to consume a conspecific or a heterospecific prey from the same guild. This decision may depend on the relative quality and abundance of the prey but also on other factors such as relatedness by descent, prey-specific defence and the probability of the victim harbouring shared diseases.
2. Here, intra-guild interactions among two cannibalistic species of predatory mites, Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae) that belong to closely related genera were studied.
3. Individuals of I. degenerans were offered a diet of conspecifics or heterospecifics. Because I. degenerans is capable of recognising kin individuals from non-kin, and they were exclusively offered conspecifics that were either distantly related or non-kin, it was expected that it would not refrain from cannibalising for reasons of possible relatedness.
4. When corrected for numbers of victims eaten, survival, and juvenile development of predators fed with intra-guild prey was higher than that of cannibals. This was probably caused by a higher quality of heterospecific victims, even though conspecific victims were larger and therefore potentially contained more food. This led to the prediction that the predators should strongly prefer heterospecific prey. This was indeed borne out in independent choice experiments. Thus, the choice of predators between heterospecific and conspecific prey is not only affected by avoidance of consuming conspecifics, but also by relative prey quality.  相似文献   
80.
Applied Biochemistry and Microbiology - The use of specialized cultures of microorganisms and biological products based on them is the most acceptable way to solve such topical problems as an...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号