首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   17篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   7篇
  2011年   5篇
  2010年   7篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   6篇
  2005年   7篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   8篇
  1999年   4篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1979年   2篇
  1978年   2篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
11.
Abnormal cell cycle events are increasingly becoming important attributes of neurodegenerative pathology. Pin1 is a crucial target of neurodegeneration in relation to its functions regarding these abnormal cell cycle events in neurons. Pin1 is majorly involved in many aspects of cell cycle regulation and it has also been suggested to have a neuroprotective function against neurodegenerative pathologies. Oxidative dysregulation of Pin1 affects not only normal tau regulation, eventually causing tangle formation, but also cell cycle regulation in neurons. Presence of cell cycle proteins has been shown in many neurodegenerative diseases. Importantly, many of these proteins have physical interactions with Pin1. Hence, understanding Pin1's role in abnormal cell cycle re-entry is critical in terms of finding new approaches for the future therapeutic options treating neurodegenerative pathologies. Here, we show that inhibition of Pin1 by its selective inhibitor juglone leads to up-regulation of cyclinD1, phospho-tau, and caspase 3, producing apoptosis in cultured rat hippocampal neurons. We also observed axonal retraction with a change in sub-cellular localizations of cyclins. Therefore, Pin1 dysregulation, in relation to its role in cell cycle regulation in neurons, may have profound effects in the progression of neurodegenerative pathology, making it a possible crucial target behind many neurodegenerative diseases.  相似文献   
12.
13.
Carbon nanotube (CNTs) is a new alternative for efficient drug delivery and it has a great potential to change drug delivery system profile in pharmaceutical industry. One of the important advantage of CNTs is their needle-like, cylindrical shape. This shape provides a high surface area for multiple connections and adsorption onto for millions of therapeutic molecules. CNTs can be internalized by cells via endocytosis, passive diffusion and phagocytosis and release the drug with different effects like pH and temperature. The acidic nature of cancer cells and the susceptibility of CNTs to release the drug in the acidic environment have made it a promising area of research in cancer drug delivery. In this research, we investigated cell viability, cytotoxicity and drug delivery in breast cancer cell line by designing non-covalent single walled carbon nanotubes (SWNT)–doxorubicin (DOX) supramolecular complex that can be developed for cancer therapy. Applied high concentrations of DOX loaded SWNTs changed the actin structure of the cells and prevented the proliferation of the cells. It was showed that doxorubicin loaded SWNTs were more effective than free doxorubicin at relatively small concentrations. Once we applied same procedure for short and long (short: 1–1.3 µm; long: 2.5–4 µm) SWNTs and compared the results, more disrupted cell structure and reduction in cell proliferation were observed for long CNTs. DOX is bounded more to nanotubes in basic medium, less bound in acidic environment. Cancer cells were also examined for concentration at which they were effective by applying DOX and it was seen that 3.68 µM doxorubicin kills more than 55% of the cells.  相似文献   
14.
15.
The importin-α/β complex and the GTPase Ran mediate nuclear import of proteins with a classical nuclear localization signal. Although Ran has been implicated also in a variety of other processes, such as cell cycle progression, a direct function of Ran has so far only been demonstrated for importin-mediated nuclear import. We have now identified an entire class of ∼20 potential Ran targets that share a sequence motif related to the Ran-binding site of importin-β. We have confirmed specific RanGTP binding for some of them, namely for two novel factors, RanBP7 and RanBP8, for CAS, Pse1p, and Msn5p, and for the cell cycle regulator Cse1p from Saccharomyces cerevisiae. We have studied RanBP7 in more detail. Similar to importin-β, it prevents the activation of Ran''s GTPase by RanGAP1 and inhibits nucleotide exchange on RanGTP. RanBP7 binds directly to nuclear pore complexes where it competes for binding sites with importin-β, transportin, and apparently also with the mediators of mRNA and U snRNA export. Furthermore, we provide evidence for a Ran-dependent transport cycle of RanBP7 and demonstrate that RanBP7 can cross the nuclear envelope rapidly and in both directions. On the basis of these results, we propose that RanBP7 might represent a nuclear transport factor that carries an as yet unknown cargo, which could apply as well for this entire class of related RanGTP-binding proteins.The nuclear pore complexes (NPC)1 are the sites where the exchange of macromolecules between nucleus and cytoplasm occurs (Feldherr et al., 1984). Transport through the NPCs is bidirectional and comprises a multitude of substrates. Small molecules can passively diffuse through the NPC. The transport of proteins and RNAs >40–60 kD is, however, generally an active process, i.e., it is energy dependent (Newmeyer et al., 1986) and mediated by saturable transport receptors (Goldfarb et al., 1986; Michaud and Goldfarb, 1991; Jarmolowski et al., 1994). To accomplish multiple rounds of transport, these transport receptors are thought to shuttle between nucleus and cytoplasm (Goldfarb et al., 1986). An import receptor, for example, has to bind its import substrate initially in the cytoplasm, release it after NPC passage into the nucleus, and return to the cytoplasm without the cargo. Conversely, an export factor has to bind the export substrate only in the nucleus and on the way out. This model predicts asymmetry in these transport cycles and implies that the binding of the transport receptor to its cargo is regulated by the different environments of nucleus and cytoplasm.The nuclear import of proteins with a classical nuclear localization signal (NLS) is to date the best characterized nucleocytoplasmic transport pathway (for reviews see Görlich and Mattaj, 1996; Koepp and Silver, 1996; Schlenstedt, 1996). The signal contains one or more clusters of basic amino acids (for review see Dingwall and Laskey, 1991) and is recognized by the importin-α/β complex (for references see Sweet and Gerace, 1995; Panté and Aebi, 1996). The α subunit provides the NLS binding site (Imamoto et al., 1995; Weis et al., 1995) and is therefore also called the NLS receptor (Adam and Gerace, 1991). The β subunit accounts for the interaction with the NPC (Görlich et al., 1995; Moroianu et al., 1995) and carries importin-α with the NLS substrate into the nucleus. The translocation into the nucleus is terminated by the disassembly of the importin complex, and both subunits are returned probably separately to the cytoplasm. Importin-α interacts with -β via its importin-β binding domain (IBB domain; Görlich et al., 1996a ; Weis et al., 1996a ). Binding to importin-β with an IBB domain is sufficient for nuclear entry, and the IBB domain can therefore be regarded as the nuclear targeting signal of importin-α. The export domain of importin-α has not yet been identified, but it is distinct from the IBB domain.The small GTPase Ran (Drivas et al., 1990; Bischoff and Ponstingl, 1991b ; Belhumeur et al., 1993) plays a key role in NLS-dependent protein import (Melchior et al., 1993; Moore and Blobel, 1993). GTP hydrolysis by Ran is absolutely essential for import (Melchior et al., 1993; Moore and Blobel, 1993; Schlenstedt et al., 1995a ; Palacios et al., 1996) and is possibly even its sole source of energy (Weis et al., 1996b ). Although the molecular mechanism of import is far from being understood, it appears that Ran fulfils at least two distinct functions in this process: first, Ran''s GTP cycle probably drives translocation into the nucleus (Melchior et al., 1993; Moore and Blobel, 1993; Weis et al., 1996b ), which appears to involve the binding of (cytoplasmic) RanGDP to the NPC, followed by nucleotide exchange and GTP hydrolysis, but it does not involve binding of RanGTP to importin-β (Görlich et al., 1996b ). Unfortunately, nothing is known of how Ran''s GTP cycle would translate into a directed movement through the NPC. Secondly, Ran regulates the interaction between importin-α and -β (Rexach and Blobel, 1995; Chi et al., 1996; Görlich et al., 1996b ). Binding of RanGTP to importin-β disassembles the importin-α/β complex at the nuclear side of the NPC, thereby terminating translocation (Görlich et al., 1996b ). The asymmetric distribution of Ran''s principal GDP/GTP exchange factor (RCC1; Bischoff and Ponstingl, 1991a ) and GTPase activating protein (RanGAP1, or RNA1 in yeast; Bischoff et al., 1995a ; Becker et al., 1995) crucially determines where the importin heterodimer can form and where it is forced to dissociate. RCC1 is a nuclear, chromatin-bound protein (Ohtsubo et al., 1987, 1989) that generates RanGTP in the nucleus, whereas free RanGTP is depleted from the cytoplasm by RanGAP1, which is excluded from the nucleoplasm (Hopper et al., 1990; Matunis et al., 1996; Mahajan et. al, 1997). Thus, low RanGTP levels in the cytoplasm allow importin-α to bind -β, and the high RanGTP concentration in the nuclear compartment dissociates the importin complex. The concentration of free RanGTP can, in this model, be regarded as a marker for cytoplasmic identity (low RanGTP) and nuclear identity (high RanGTP), which is “sensed” by the Ran-binding site in importin-β.It is likely that at least some properties of importin-β are shared by the mediators of the other nucleocytoplasmic transport pathways. This is emphasized by the recent identification of the importin-β–related transportin (Pollard et al., 1996) as an import receptor recognizing the M9 domain, the nuclear targeting signal in hnRNP A1 (Michael et al., 1995), and of yeast transportin (Kap 104p) as an import receptor for mRNA binding proteins (Aitchison et al., 1996). Furthermore, importin-β or its NPC-binding domain cross-compete with other pathways, such as M9-dependent import, NES-mediated nuclear export, and the export of mRNA and U snRNA (Kutay et al., 1997). This would suggest that these other transport receptors share at least some binding sites at the NPC and take a similar path through the nuclear pore complex as importin-β.In addition to importin-β, a number of other Ran-binding proteins are detectable in eukaryotic cells, e.g., in overlay blots using Ran γ-[32P]GTP as a probe. These can be grouped into two classes (Lounsbury et al., 1994, 1996): first, those with a RanBP1 homology domain including the Ran binding protein 1 (RanBP1) itself (Coutavas et al., 1993; Bischoff et al., 1995b ) and the nuclear pore protein RanBP2, which has four RanBP1 homology domains (Wu et al., 1995; Yokoyama et al., 1995). Their binding to Ran can be competed by RanBP1. Second, importin-β and so far unidentified protein(s) of ∼120 kD whose Ran-binding is competed by importin-β but not by excess of RanBP1 (Lounsbury et al., 1994, 1996). Both RanBP1 and importin-β inhibit the nucleotide exchange on RanGTP (Coutavas et al., 1993; Lounsbury et al., 1994, 1996; Bischoff et al., 1995b ; Görlich et al., 1996b ). However, they do not cross-compete with each other for Ran binding but instead bind to different, nonoverlapping sites on Ran (Chi et al., 1996; Kutay et al., 1997; Lounsbury and Macara, 1997). Another striking difference is that RanBP1 facilitates the activation of Ran''s GTPase by RanGAP1 (Beddow et al., 1995; Bischoff et al., 1995b ), whereas the importin-β/RanGTP complex is entirely GAP resistant (Floer and Blobel, 1996; Görlich et al., 1996b ).Although a direct involvement of Ran has so far only been demonstrated in the importin-dependent transport pathway, perturbations in the Ran system have severe effects on a great variety of cellular functions, such as RNA processing, RNA export, regulation of chromosome structure, cell cycle progression, initiation of replication, microtubule structure, etc. (for review see Dasso, 1993; Sazer, 1996). One could argue that these effects are all secondary consequences from an impaired NLS-dependent protein import. However, it is also possible that these defects are more direct and that eukaryotic cells contain many immediate targets of Ran function.Here we describe a novel superfamily of Ran-binding proteins, which includes about a dozen factors in yeast and probably even more in higher eukaryotes. The members of this superfamily share with importin-β an NH2-terminal sequence motif that appears to account for RanGTP binding. Indeed we could confirm the interaction with Ran for the following factors: RanBP7 and RanBP8, two novel, related proteins described here, Cse1p, a cell cycle regulator in yeast, CAS, which is required for apoptosis in cultured human cells, and for Msn5p and Pse1p from yeast. Of these we have characterized RanBP7 and RanBP8 in more detail. Both resemble closely importin-β in their interaction with Ran, and both bind directly to nuclear pore complexes. RanBP7 can cross the nuclear membrane rapidly and in both directions. We provide evidence for a transport cycle in which RanBP7 first enters the nucleus, binds RanGTP inside the nucleus as a prerequisite for rapid re-export to the cytoplasm, after which the RanBP7/RanGTP complex becomes finally disassembled by the concerted action of RanBP1 and RanGAP1 in the cytoplasm. We propose that during these transport cycles, RanBP7 would normally carry an as yet unidentified cargo. This means, RanBP7 and possibly also the other members of the RanBP7/Cse1p/ importin-β superfamily could function as transport receptors that shuttle between nucleus and cytoplasm. RanBP7 and importin-β form an abundant, heterodimeric complex in the cytoplasm that appears to have a function different from nuclear import of proteins with a classical NLS. It might be a way to regulate either RanBP7 or importin-β function. Alternatively, the RanBP7/importin-β complex might constitute an import receptor with a substrate specificity different from that of the importin-α/β complex.  相似文献   
16.
Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3′-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation.  相似文献   
17.
The 1,2,4‐triazole and its derivatives were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anti‐inflammatory, antitumoural, cytotoxic, and antioxidant properties. In this study, a series of triazole compounds (M1‐M10) were evaluated for some biological activities. In vitro qualifications of these compounds on acetylcholinesterase (AChE) and human carbonic anhydrase enzyme activities were performed. Also, their antitumoral activities in human colon cancer (HT29) cell line cultures were examined. In addition, colon cancer experimentation was induced in rats by an in vivo method, and the in vivo anticancer effects of triazole derivatives were investigated. Also, the effects of these derivatives in levels of antioxidant vitamin A, vitamin E, and MDA were studied in rat liver and blood samples. Most of the compounds were found to exhibit significant antioxidant and antitumoral activities. All the compounds had cytotoxic activities on HT29 cell lines with their IC50 values lower than 10 µM concentrations. The low IC 50 values of the compounds are M1 (3.88 µM), M2 (2.18 µM), M3 (4.2 µM), M4 (2.58 µM), M5 (2.88 µM), M6 (2.37 µM), M7 (3.49 µM), M8 (4.01 µM), M9 (8.90 µM), and M10 (3.12 µM).  相似文献   
18.
In this study, the effects of the two Schiff base derivatives and their metal complexes were tested for MDA concentration, which is an indicator of lipid peroxidation, antioxidant vitamin A, vitamin E, and vitamin C levels in cell culture. A comparison was performed among the groups and it was observed that MDA, vitamin A, vitamin E, and vitamin C concentrations were statistically changed. According to the results, all compounds caused a significant oxidative stress without Zn complexes. Moreover, Mn(II), Cu(II), Zn(II), and Ni(II) complexes of Schiff bases derived from a condensation of 1,2‐bis (p‐aminophenoxy) ethane with naphthaldehydes and 4‐methoxy benzaldehyde were examined in terms of antitumor activity against MCF‐7 human breast cancer and L1210 murine leukemia cells. Furthermore, the derivatives were tested for antioxidative and prooxidative effects on MCF‐7 breast cancer cells. The compounds which were tested revealed that there was an antitumor activity for MCF‐7 and L 1210 cancer cells. Also, some of the compounds induced oxidative harmful.  相似文献   
19.
Chromokinesins are microtubule plus end-directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively.  相似文献   
20.
Downregulation of miR-122 in the rodent and human hepatocellular carcinomas   总被引:19,自引:0,他引:19  
MicroRNAs (miRs) are conserved small non-coding RNAs that negatively regulate gene expression. The miR profiles are markedly altered in cancers and some of them have a causal role in tumorigenesis. Here, we report changes in miR expression profile in hepatocellular carcinomas (HCCs) developed in male Fisher rats-fed folic acid, methionine, and choline-deficient (FMD) diet. Comparison of the miR profile by microarray analysis showed altered expression of some miRs in hepatomas compared to the livers from age-matched rats on the normal diet. While let-7a, miR-21, miR-23, miR-130, miR-190, and miR-17-92 family of genes was upregulated, miR-122, an abundant liver-specific miR, was downregulated in the tumors. The decrease in hepatic miR-122 was a tumor-specific event because it did not occur in the rats switched to the folate and methyl-adequate diet after 36 weeks on deficient diet, which did not lead to hepatocarcinogenesis. miR-122 was also silent in a transplanted rat hepatoma. Extrapolation of this study to human primary HCCs revealed that miR-122 expression was significantly (P = 0.013) reduced in 10 out of 20 tumors compared to the pair-matched control tissues. These findings suggest that the downregulation of miR-122 is associated with hepatocarcinogenesis and could be a potential biomarker for liver cancers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号