首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   43篇
  2021年   8篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   7篇
  2014年   12篇
  2013年   14篇
  2012年   19篇
  2011年   16篇
  2010年   10篇
  2009年   12篇
  2008年   12篇
  2007年   12篇
  2006年   17篇
  2005年   15篇
  2004年   15篇
  2003年   12篇
  2002年   13篇
  2001年   16篇
  2000年   15篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   7篇
  1993年   7篇
  1992年   7篇
  1991年   13篇
  1990年   5篇
  1989年   8篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   7篇
  1973年   3篇
  1971年   3篇
  1970年   3篇
  1969年   4篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有360条查询结果,搜索用时 31 毫秒
11.
The mechanisms of three types of hyperpolarizing electrogenesis in hamster submandibular ganglion cells were analyzed with intracellular microelectrodes. These included (1) spike-induced hyperpolarizing afterpotential (S-HAP), (2) spontaneous transient hyperpolarizing potential (HP), and (3) the hyperpolarizing (H) phase of postsynaptic potential (PSP). Most of these hyperpolarizing potentials were due to conductance increases and reversed polarity at membrane potential (Em) between -70 and -85 mV, which was close to the K-equilibrium potential. The average resting potential of ganglion cells was -53 mV. Action potential overshoot increased slightly in high [Ca2+]0 and decreased in low [Ca2+]0. In most neurons action potentials were completely suppressed by 10(-7)-M tetrodotoxin (TTX). The S-HAP has an initial component due to delayed rectification and a late component. The late component is enhanced by increasing [Ca2+]0, or by applying Ca-ionophore (A23187), TEA, caffeine, or dibutyryl cyclic (DBc-) AMP; it is suppressed by decreasing [Ca2+]0, or by applying Mn2+. Perfusion with Cl--free saline reduced membrane potential slightly but did not modify the S-HAP. Depolarizing pulses also induced hyperpolarizing afterpotential (D-HAP), similar to the S-HAP. Spontaneous transient HPs occurred in some neurons at irregular intervals. HPs were insensitive to TTX but were suppressed by Mn2+. Caffeine induced low frequency rhythmic HPs in many neurons, often alternating with periods of repetitive spiking. The PSP was a monophasic depolarizing (D-) potential in some neurons, but in others the D-phase was followed by a small H-phase. Perfusion with A23187, caffeine or DBc-AMP increased the H-phase of the PSP. Perfusion with K+-free saline or treatment with 10(-5)M ouabain did not abolish the H-phase of PSPs. These membrane potential-dependent phenomena appear to be induced mainly by Ca-mediated K-conductance increases. This mechanism contributes to the regulation of low-frequency repetitive firing in submandibular ganglion cells.  相似文献   
12.
The mer operon from a strain of Thiobacillus ferrooxidans (C. Inoue, K. Sugawara, and T. Kusano, Mol. Microbiol. 5:2707-2718, 1991) consists of the regulatory gene merR and an operator-promoter region followed by merC and merA structural genes and differs from other known gram-negative mer operons. We have constructed four potential shuttle plasmids composed of a T. ferrooxidans-borne cryptic plasmid, a pUC18 plasmid, and the above-mentioned mer determinant as a selectable marker. Mercury ion-sensitive T. ferrooxidans strains were electroporated with constructed plasmids, and one strain, Y4-3 (of 30 independent strains tested), was found to have a transformation efficiency of 120 to 200 mercury-resistant colonies per microgram of plasmid DNA. This recipient strain was confirmed to be T. ferrooxidans by physiological, morphological, and chemotaxonomical data. The transformants carried a plasmid with no physical rearrangements through 25 passages under no selective pressure. Cell extracts showed mercury ion-dependent NADPH oxidation activity.  相似文献   
13.
Summary Gene conversion - apparently non-reciprocal transfer of sequence information between homologous DNA sequences - has been reported in various organisms. Frequent association of gene conversion with reciprocal exchange (crossing-over) of the flanking sequences in meiosis has formed the basis of the current view that gene conversion reflects events at the site of interaction during homologous recombination. In order to analyze mechanisms of gene conversion and homologous recombination in an Escherichia coli strain with an active RecF pathway (recBC sbcBC), we first established in cells of this strain a plasmid carrying two mutant neo genes, each deleted for a different gene segment, in inverted orientation. We then selected kanamycin-resistant plasmids that had reconstituted an intact neo + gene by homologous recombination. We found that all the neo + plasmids from these clones belonged to the gene-conversion type in the sense that they carried one neo + gene and retained one of the mutant neo genes. This apparent gene conversion was, however, only very rarely accompanied by apparent crossing-over of the flanking sequences. This is in contrast to the case in a rec + strain. or in a strain with an active RecE pathway (recBC sbcA). Our further analyses, especially comparisons with apparent gene conversion in the rec + strain, led us to propose a mechanism for this biased gene conversion. This successive half crossing-over model proposes that the elementary recombinational process is half crossing;-over in the sense that it generates only one recombinant DNA duplex molecule, and leaves one or two free end(s), out of two parental DNA duplexes. The resulting free end is, the model assumes, recombinogenic and frequently engages in a second round of half crossing-over with the recombinant duplex. The products resulting from such interaction involving two molecules of the plasmid would be classified as belonging to the gene-conversion type without crossing-over. We constructed a dimeric molecule that mimics the intermediate form hypothesized in this model and introduced it into cells. Biased gene conversion products were obtained in this reconstruction experiment. The half crossing-over mechanism can also explain formation of huge linear multimers of bacterial plasmids, the nature of transcribable recombination products in bacterial conjugation, chromosomal gene conversion not accompanied by flanking exchange (like that in yeast mating-type switching), and antigenic variation in microorganisms.  相似文献   
14.
15.
The postmetamorphic growth and survival of the salamander Hynobius nebulosus tokyoentisTago were surveyed in the study site located in Habu village of Hinodemachi, a suburb of Tokyo City, during 1975–1981. A laboratory experiment on the growth rate of juveniles was conducted in parallel with the field survey. The result indicated that this salamander grew at the rate of 8,mm in s.v.l. per year during the juvenile stage, but its growth rate decreased markedly as low as 1.8 mm for males and 1.1 mm for females, once it had attained sexual maturity. According to the “capture-recapture” procedure the annual survival rate after metamorphosis was found to be quite high; that is, approximately 0.7. By using the growth rate of juveniles and the difference between the sizes at metamorphosis and sexual maturity, the age at first reproduction was estimated to be 4 year for males and 5 year for females. From the data obtained in this study, the intrinsic rates of increase (r) were calculated for various values of age at first reproduction under different survival schedules, and the relationship between the age at first reproduction and fitness as measured by r was examined. The result indicated that an optimal age maximizing fitness always existed under respective survival schedules, and the observed age at first reproduction of this salamandei was found to coincide well with the predicted optimal age.  相似文献   
16.
The content of glutamate, GABA, aspartate, glycine and alanine was determined in the cerebellum, brain stem and cerebrum of three different mutant mice which have been named ‘staggerer’, ‘weaver’ and ‘nervous’ on the basis of neurological symptoms. In the ‘staggerer’ and ‘weaver’ mutants there is an almost complete absence of granule cells in the cerebellar cortex while in the ‘nervous’ mutant there is a loss of Purkinje cells (and to a lesser extent a loss of granule cells) in the cerebellar cortex. In the cerebellum of the ‘weaver’ mutant, the content of glutamate was signficantly lower (P < 0.025) than control values (8.77 ± 0.76 vs 12.0 ± 1.3 μmol/g tissue wet wt) and the contents of GABA and glycine were significantly greater than normal levels. In the cerebellum of the ‘staggerer’ mutant, the content of glutamate was significantly lower (6.62 ± 0.70 μmol/g) and the contents of glycine and alanine significantly higher than control values. In the cerebrum and brain stem regions of the staggerer mutant, weaver mutant and the normals the contents of the five amino acids were the same. The contents of glycine and alanine in the cerebellum, GARA and glycine in the brain stem and GABA and alanine in the cerebrum of the nervous mutants were higher than control values. The data are discussed in terms of a possible role for glutamate functioning as an excitatory transmitter when released from the cerebellar granule cells.  相似文献   
17.
18.

Background

Advanced glycation end product (AGE) accumulation is thought to be a measure of cumulative metabolic stress that has been reported to independently predict cardiovascular disease in diabetes and renal failure. The aim of this study was to evaluate the association between AGE accumulation, measured as skin autofluorescence, and the progression of renal disease in pre-dialysis patients with chronic kidney disease (CKD).

Methods

Skin autofluorescence was measured noninvasively with an autofluorescence reader at baseline in 449 pre-dialysis patients with CKD. The primary end point was defined as a doubling of serum creatinine and/or need for dialysis.

Results

Thirty-three patients were lost to follow-up. Forty six patients reached the primary end point during the follow-up period (Median 39 months). Kaplan-Meier analysis showed a significantly higher risk of development of the primary end points in patients with skin autofluorescence levels above the optimal cut-off level of 2.31 arbitrary units, derived by receiver operator curve analysis. Cox regression analysis revealed that skin autofluorescence was an independent predictor of the primary end point, even after adjustment for age, gender, smoking history, diabetes, estimated glomerular filtration rate and proteinuria (adjusted hazard ratio 2.58, P = 0.004).

Conclusions

Tissue accumulation of AGEs, measured as skin autofluorescence, is a strong and independent predictor of progression of CKD. Skin autofluorescence may be useful for risk stratification in this group of patients; further studies should clarify whether AGE accumulation could be one of the therapeutic targets to improve the prognosis of CKD.  相似文献   
19.
The trypsin inhibitors in buckwheat seeds were isolated by affinity chromatography on trypsin-Sepharose 4B, and the components were fractionated by chromatography on DEAE-Sepharose CL-6B. The major components, inhibitors I, II and III, were found to be homogeneous proteins with molecular weight of about 8,000. Trypsin inhibitory activity was more pronounced than the chymotrypsin inhibitory activity in all the inhibitor preparation obtained. The three major inhibitors had similar amino acid compositions and had no detectable amounts of tryptophan and carbohydrate. A high level of acidic and basic amino acid residues and a low level of methionine, tyrosine and phenylalanine residues characterized the inhibitors. Although the inhibitors I and II were particularly thermostable, inhibitor III, the most abundant component, was shown to be relatively heat-labile.  相似文献   
20.
Sugimoto A  Kusano A  Hozak RR  Derry WB  Zhu J  Rothman JH 《Genetics》2001,158(1):237-252
To identify genes involved in programmed cell death (PCD) in Caenorhabditis elegans, we screened a comprehensive set of chromosomal deficiencies for alterations in the pattern of PCD throughout embryonic development. From a set of 58 deficiencies, which collectively remove approximately 74% of the genome, four distinct classes were identified. In class I (20 deficiencies), no significant deviation from wild type in the temporal pattern of cell corpses was observed, indicating that much of the genome does not contain zygotic genes that perform conspicuous roles in embryonic PCD. The class II deficiencies (16 deficiencies defining at least 11 distinct genomic regions) led to no or fewer-than-normal cell corpses. Some of these cause premature cell division arrest, probably explaining the diminution in cell corpse number; however, others have little effect on cell proliferation, indicating that the reduced cell corpse number is not a direct result of premature embryonic arrest. In class III (18 deficiencies defining at least 16 unique regions), an excess of cell corpses was observed. The developmental stage at which the extra corpses were observed varied among the class III deficiencies, suggesting the existence of genes that perform temporal-specific functions in PCD. The four deficiencies in class IV (defining at least three unique regions), showed unusually large corpses that were, in some cases, attributable to extremely premature arrest in cell division without a concomitant block in PCD. Deficiencies in this last class suggest that the cell death program does not require normal embryonic cell proliferation to be activated and suggest that while some genes required for cell division might also be required for cell death, others are not. Most of the regions identified by these deficiencies do not contain previously identified zygotic cell death genes. There are, therefore, a substantial number of as yet unidentified genes required for normal PCD in C. elegans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号