首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   10篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有46条查询结果,搜索用时 0 毫秒
41.
Algorithms and software for support of gene identification experiments   总被引:1,自引:0,他引:1  
MOTIVATION: Gene annotation is the final goal of gene prediction algorithms. However, these algorithms frequently make mistakes and therefore the use of gene predictions for sequence annotation is hardly possible. As a result, biologists are forced to conduct time-consuming gene identification experiments by designing appropriate PCR primers to test cDNA libraries or applying RT-PCR, exon trapping/amplification, or other techniques. This process frequently amounts to 'guessing' PCR primers on top of unreliable gene predictions and frequently leads to wasting of experimental efforts. RESULTS: The present paper proposes a simple and reliable algorithm for experimental gene identification which bypasses the unreliable gene prediction step. Studies of the performance of the algorithm on a sample of human genes indicate that an experimental protocol based on the algorithm's predictions achieves an accurate gene identification with relatively few PCR primers. Predictions of PCR primers may be used for exon amplification in preliminary mutation analysis during an attempt to identify a gene responsible for a disease. We propose a simple approach to find a short region from a genomic sequence that with high probability overlaps with some exon of the gene. The algorithm is enhanced to find one or more segments that are probably contained in the translated region of the gene and can be used as PCR primers to select appropriate clones in cDNA libraries by selective amplification. The algorithm is further extended to locate a set of PCR primers that uniformly cover all translated regions and can be used for RT-PCR and further sequencing of (unknown) mRNA.   相似文献   
42.
43.
Caveolae and sorting in the trans-Golgi network of epithelial cells.   总被引:34,自引:2,他引:32       下载免费PDF全文
VIP21 is a 21 kDa membrane protein present in TGN-derived transport vesicles isolated from the epithelial MDCK cell line. The membrane topology and subcellular localization of VIP21 were studied using antibodies against the N- and C-terminal domains. The protein was found to have a structure with little or no exposure to the exoplasmic side of the membrane. VIP21 was localized to the TGN, consistent with its presence in TGN-derived transport vesicles. Unexpectedly, it was also very abundant in the non-clathrin-coated plasma membrane invaginations called caveolae. We have previously proposed that VIP21 is associated with glycosphingolipid-enriched membrane domains in the TGN which may be involved in the sorting of proteins into vesicles directed to the apical plasma membrane. Caveolae are specialized lipid structures with similarities to the glycolipid microdomains in the TGN. The presence of VIP21 in both locations suggests that the mechanisms governing inclusion of proteins into caveolar plasma membrane domains are related to the processes of protein and lipid sorting at the TGN. This connection is confirmed by the recent finding that the amino acid sequence of VIP21 is almost identical to that of caveolin, a protein previously localized to caveolae.  相似文献   
44.
45.
Photocrosslinking has been used to identify integral proteins of the endoplasmic reticulum membrane that are in proximity to nascent preprolactin during in vitro translocation. A photoreactive lysyl derivative was introduced into truncated preprolactin chains comprising 86 or 115 amino acids. Both with the 86mer, containing the reactive group in the signal sequence, and with the 115mer, containing the probe exclusively in the mature portion of the chain, photocrosslinking occurred to an approximately 35 kDa transmembrane glycoprotein, the signal sequence receptor (SSR). SSR is identical with a previously isolated abundant and ubiquitous 34 kDa membrane protein that appears to be essential for protein translocation.  相似文献   
46.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号