首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   493篇
  免费   52篇
  2020年   2篇
  2019年   2篇
  2018年   8篇
  2017年   7篇
  2016年   7篇
  2015年   18篇
  2014年   19篇
  2013年   26篇
  2012年   30篇
  2011年   15篇
  2010年   20篇
  2009年   25篇
  2008年   27篇
  2007年   20篇
  2006年   17篇
  2005年   24篇
  2004年   19篇
  2003年   15篇
  2002年   11篇
  2001年   14篇
  2000年   22篇
  1999年   11篇
  1998年   11篇
  1997年   6篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   7篇
  1991年   11篇
  1990年   13篇
  1989年   11篇
  1988年   7篇
  1987年   15篇
  1986年   3篇
  1985年   6篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1975年   8篇
  1974年   5篇
  1973年   8篇
  1972年   3篇
  1969年   2篇
排序方式: 共有545条查询结果,搜索用时 15 毫秒
51.
The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection—the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.  相似文献   
52.
Cell sensitivity to oxidative stress is influenced by ferritin autophagy   总被引:1,自引:0,他引:1  
To test the consequences of lysosomal degradation of differently iron-loaded ferritin molecules and to mimic ferritin autophagy under iron-overload and normal conditions, J774 cells were allowed to endocytose heavily iron loaded ferritin, probably with some adventitious iron (Fe-Ft), or iron-free apo-ferritin (apo-Ft). When cells subsequently were exposed to a bolus dose of hydrogen peroxide, apo-Ft prevented lysosomal membrane permeabilization (LMP), whereas Fe-Ft enhanced LMP. A 4-h pulse of Fe-Ft initially increased oxidative stress-mediated LMP that was reversed after another 3h under standard culture conditions, suggesting that lysosomal iron is rapidly exported from lysosomes, with resulting upregulation of apo-ferritin that supposedly is autophagocytosed, thereby preventing LMP by binding intralysosomal redox-active iron. The obtained data suggest that upregulation of the stress protein ferritin is a rapid adaptive mechanism that counteracts LMP and ensuing apoptosis during oxidative stress. In addition, prolonged iron starvation was found to induce apoptotic cell death that, interestingly, was preceded by LMP, suggesting that LMP is a more general phenomenon in apoptosis than so far recognized. The findings provide new insights into aging and neurodegenerative diseases that are associated with enhanced amounts of cellular iron and show that lysosomal iron loading sensitizes to oxidative stress.  相似文献   
53.

Background

The predictive ability of genomic estimated breeding values (GEBV) originates both from associations between high-density markers and QTL (Quantitative Trait Loci) and from pedigree information. Thus, GEBV are expected to provide more persistent accuracy over successive generations than breeding values estimated using pedigree-based methods. The objective of this study was to evaluate the accuracy of GEBV in a closed population of layer chickens and to quantify their persistence over five successive generations using marker or pedigree information.

Methods

The training data consisted of 16 traits and 777 genotyped animals from two generations of a brown-egg layer breeding line, 295 of which had individual phenotype records, while others had phenotypes on 2,738 non-genotyped relatives, or similar data accumulated over up to five generations. Validation data included phenotyped and genotyped birds from five subsequent generations (on average 306 birds/generation). Birds were genotyped for 23,356 segregating SNP. Animal models using genomic or pedigree relationship matrices and Bayesian model averaging methods were used for training analyses. Accuracy was evaluated as the correlation between EBV and phenotype in validation divided by the square root of trait heritability.

Results

Pedigree relationships in outbred populations are reduced by 50% at each meiosis, therefore accuracy is expected to decrease by the square root of 0.5 every generation, as observed for pedigree-based EBV (Estimated Breeding Values). In contrast the GEBV accuracy was more persistent, although the drop in accuracy was substantial in the first generation. Traits that were considered to be influenced by fewer QTL and to have a higher heritability maintained a higher GEBV accuracy over generations. In conclusion, GEBV capture information beyond pedigree relationships, but retraining every generation is recommended for genomic selection in closed breeding populations.  相似文献   
54.

Background

A recent epidemiological study demonstrated a reduced risk of lung cancer mortality in breast cancer patients using antiestrogens. These and other data implicate a role for estrogens in lung cancer, particularly nonsmall cell lung cancer (NSCLC). Approximately 61% of human NSCLC tumors express nuclear estrogen receptor β (ERβ); however, the role of ERβ and estrogens in NSCLC is likely to be multifactorial. Here we tested the hypothesis that proteins interacting with ERβ in human lung adenocarcinoma cells that respond proliferatively to estradiol (E2) are distinct from those in non-E2-responsive cells.

Methods

FLAG affinity purification of FLAG-ERβ-interacting proteins was used to isolate ERβ-interacting proteins in whole cell extracts from E2 proliferative H1793 and non-E2-proliferative A549 lung adenocarcinoma cell lines. Following trypsin digestion, proteins were identified using liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS). Proteomic data were analyzed using Ingenuity Pathway Analysis. Select results were confirmed by coimmunoprecipitation.

Results

LC-MS/MS identified 27 non-redundant ERβ-interacting proteins. ERβ-interacting proteins included hsp70, hsp60, vimentin, histones and calmodulin. Ingenuity Pathway Analysis of the ERβ-interacting proteins revealed differences in molecular and functional networks between H1793 and A549 lung adenocarcinoma cells. Coimmunoprecipitation experiments in these and other lung adenocarcinoma cells confirmed that ERβ and EGFR interact in a gender-dependent manner and in response to E2 or EGF. BRCA1 interacted with ERβ in A549 cell lines and in human lung adenocarcinoma tumors, but not normal lung tissue.

Conclusion

Our results identify specific differences in ERβ-interacting proteins in lung adenocarcinoma cells corresponding to ligand-dependent differences in estrogenic responses.
  相似文献   
55.

Background  

Designing maximally selective ligands that act on individual targets is the dominant paradigm in drug discovery. Poor selectivity can underlie toxicity and side effects in the clinic, and for this reason compound selectivity is increasingly monitored from very early on in the drug discovery process. To make sense of large amounts of profiling data, and to determine when a compound is sufficiently selective, there is a need for a proper quantitative measure of selectivity.  相似文献   
56.
Osteoarthritis (OA) is aggravated in menopausal women possibly because of changed serum estrogen levels. Estradiol has been postulated to affect oxidative stress induced by reactive oxygen species (ROS) in articular chondrocytes. We generated ROS in cultured bovine articular chondrocytes by incubating them with combined Fe2SO4, vitamin C, and hydrogen peroxide. The release of thiobarbituric-acid-reactive substances (TBARS, lipid peroxidation) and lactate dehydrogenase (LDH, membrane damage) was measured photometrically. Various estradiol doses and vitamin E, serving as control with an established anti-oxidative capacity, were applied either upon each exchange of medium and during radical production (strategy 1) or only during radical production (strategy 2). In chondrocytes incubated according to strategy 1, the production of TBARS and LDH release were significantly suppressed by 10–10–10–4 M estradiol or by vitamin E. Under strategy 2, the production of TBARS was significantly suppressed at estradiol concentrations higher than 10–6 M, whereas LDH release was inhibited at concentrations of 10–6–10–4 M. Vitamin E showed no significant effects. As repeated application of estradiol and vitamin E produced the best results, estradiol, like vitamin E, was speculated to accumulate in the plasma membrane and to decrease membrane fluidity resulting in protection against lipid peroxidation (non-genomic effect). Thus, in contrast to the neuroprotective effect of 17-estradiol in supraphysiological doses reported recently, the anti-oxidative potential of estradiol appears to protect articular chondrocytes from ROS-induced damage when the hormone is given repeatedly in a physiological range. Decreased estradiol levels may therefore contribute to menopausal OA in the long term.  相似文献   
57.
Ebola virus, a member of the family Filoviridae, causes one of the most severe forms of viral hemorrhagic fever. In the terminal stages of disease, symptoms progress to hypotension, coagulation disorders, and hemorrhages, and there is prominent involvement of the mononuclear phagocytic and reticuloendothelial systems. Cells of the mononuclear phagocytic system are primary target cells and producers of inflammatory mediators. Ebola virus efficiently produces four soluble glycoproteins during infection: sGP, delta peptide (Delta-peptide), GP(1), and GP(1,2Delta). While the presence of these glycoproteins has been confirmed in blood (sGP) and in vitro systems, it is hypothesized that they are of biological relevance in pathogenesis, particularly target cell activation. To gain insight into their function, we expressed the four soluble glycoproteins in mammalian cells and purified and characterized them. The role of the transmembrane glycoprotein in the context of virus-like particles was also investigated. Primary human macrophages were treated with glycoproteins and virus-like particles and subsequently tested for activation by detection of several critical proinflammatory cytokines (tumor necrosis factor alpha, interleukin-6 [IL-6], and IL-1 beta) and the chemokine IL-8. The presentation of the glycoprotein was determined to be critical since virus-like particles, but not soluble glycoproteins, induced high levels of activation. We propose that the presentation of GP(1,2) in the rigid form such as that observed on the surface of particles is critical for initiating a sufficient signal for the activation of primary target cells. The secreted glycoproteins do not appear to play any role in exogenous activation of these cells during Ebola virus infection.  相似文献   
58.
Kurz LC  Fite B  Jean J  Park J  Erpelding T  Callis P 《Biochemistry》2005,44(5):1394-1413
The formation of all major intermediates in the reaction catalyzed by the citrate synthase from Thermoplasma acidophilum is accompanied by changes in tryptophan fluorescence. The largest change is the strong quenching observed on formation of the binary complex with substrate, oxaloacetate (OAA). The four tryptophan residues present in the enzyme have been changed to nonfluorescent ones in various combinations without major perturbations in protein stability, enzyme mechanism, or other physical properties. W348, residing in the hydrophobic core of the protein behind the active site wall ca. 9 A from OAA, is responsible for the majority of the protein's intrinsic fluorescence and all of the quenching that accompanies OAA binding. Lifetime studies show that all of the quenching results from excited-state processes. The lack of solvent isotope effects on the quantum yields excludes a quenching mechanism involving proton transfer to an acceptor. There are no significant changes in fluorescence properties in single site mutants of residues near W348 that change conformation and/or interactions when OAA binds. This result excludes these changes from a direct role. Electron transfer from the indole excited state to some acceptor is the major quenching mechanism; the reduced quenching observed in the 5F-W-substituted protein strengthens this conclusion. Using the X-ray structures of the unliganded enzyme and its OAA binary complex, hybrid quantum mechanics-molecular dynamics (QM-MM) calculations show that OAA itself is the most likely quencher with the OAA carbonyl as the electron acceptor. This conclusion is strengthened by the ability of an alpha-keto acid model compound, trimethylpyruvate, to act as a diffusional quencher of indole fluorescence in solution. The theoretical calculations further indicate that the positive electrostatic potential surrounding the OAA carbonyl within the enzymes' active site is essential to its ability to accept an electron from the excited state of W348. These same environmental factors play a major role in activating OAA to react with the carbanion of acetyl-CoA. Since carbonyl polarization plays a role in the catalytic strategies of numerous enzymes whose reactions involve this functional group, tryptophan fluorescence changes might be useful as a mechanistic probe for other systems.  相似文献   
59.
60.
Kurz T  Gustafsson B  Brunk UT 《The FEBS journal》2006,273(13):3106-3117
Oxidant-induced cell damage may be initiated by peroxidative injury to lysosomal membranes, catalyzed by intralysosomal low mass iron that appears to comprise a major part of cellular redox-active iron. Resulting relocation of lytic enzymes and low mass iron would result in secondary harm to various cellular constituents. In an effort to further clarify this still controversial issue, we tested the protective effects of two potent iron chelators--the hydrophilic desferrioxamine (dfo) and the lipophilic salicylaldehyde isonicotinoyl hydrazone (sih), using cultured lysosome-rich macrophage-like J774 cells as targets. dfo slowly enters cells via endocytosis, while the lipophilic sih rapidly distributes throughout the cell. Following dfo treatment, long-term survival of cells cannot be investigated because dfo by itself, by remaining inside the lysosomal compartment, induces apoptosis that probably is due to iron starvation, while sih has no lasting toxic effects if the exposure time is limited. Following preincubation with 1 mM dfo for 3 h or 10 microM sih for a few minutes, both agents provided strong protection against an ensuing approximately LD50 oxidant challenge by preventing lysosomal rupture, ensuing loss of mitochondrial membrane potential, and apoptotic/necrotic cell death. It appears that once significant lysosomal rupture has occurred, the cell is irreversibly committed to death. The results lend strength to the concept that lysosomal membranes, normally exposed to redox-active iron in high concentrations, are initial targets of oxidant damage and support the idea that chelators selectively targeted to the lysosomal compartment may have therapeutic utility in diminishing oxidant-mediated cell injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号