首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   42篇
  2023年   4篇
  2022年   6篇
  2021年   20篇
  2020年   11篇
  2019年   15篇
  2018年   15篇
  2017年   19篇
  2016年   26篇
  2015年   40篇
  2014年   37篇
  2013年   48篇
  2012年   54篇
  2011年   54篇
  2010年   34篇
  2009年   33篇
  2008年   29篇
  2007年   34篇
  2006年   36篇
  2005年   26篇
  2004年   30篇
  2003年   17篇
  2002年   20篇
  2001年   18篇
  2000年   11篇
  1999年   14篇
  1998年   11篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1990年   6篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   4篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
排序方式: 共有746条查询结果,搜索用时 250 毫秒
31.
32.
In this paper we present a detailed atomic model for a protofilament, the most basic organization level, of the amyloid fibre formed by the peptide DFNKF. This pentapeptide is a segment derived from the human calcitonin, a natural amyloidogenic protein. Our model, which represents the outcome of extensive explicit solvent molecular dynamics (MD) simulations of different strand/sheet organizations, is a single beta-sheet filament largely without a hydrophobic core. Nevertheless, this structure is capable of reproducing the main features of the characteristic amyloid fibril organization and provides clues to the molecular basis of its experimental aggregation behaviour. Our results show that the side chains' chemical diversity induces the formation of a complex network of interactions that finally determine the microscopic arrangement of the strands at the protofilament level. This network of interactions, consisting of both side chain-side chain and backbone-side chain interactions, confers on the final single beta-sheet arrangement an unexpected stability, both by enhancing the association of related chemical groups and, at the same time, by shielding the hydrophobic segments from the polar solvent. The chemical physical characterization of this protofilament provides hints to the possible thermodynamical basis of the supra molecular organization that allows the formation of the filaments by lateral association of the preformed protofibrils. Its regular, highly polarized structure shows how other protofilaments can assemble. In terms of structural biology, our results clearly indicate that an amyloid organization implies a degree of complexity far beyond a simple nonspecific association of peptide strands via amide hydrogen bonds.  相似文献   
33.
A structure-based design approach has been used to optimize a lead HIV-1 entry inhibitor targeted to the envelope glycoprotein gp41. The docking study on this lead compound revealed important structural requirements that need to be preserved as well as structural non-requirements that could be eliminated to substantially reduce the molecular size of the lead compound. Based on the results from docking study, a limited number of analogues were designed and synthesized. This approach yielded a new analogue (compound 4) that retained the anti-HIV-1 activity with reduced molecular size approaching towards more drug-like character.  相似文献   
34.
35.
The alpha/beta barrel fold is adopted by most enzymes performing a variety of catalytic reactions, but with very low sequence similarity. In order to understand the stabilizing interactions important in maintaining the alpha/beta barrel fold, we have identified residue clusters in a dataset of 36 alpha/beta barrel proteins that have less than 10% sequence identity within themselves. A graph theoretical algorithm is used to identify backbone clusters. This approach uses the global information of the nonbonded interaction in the alpha/beta barrel fold for the clustering procedure. The nonbonded interactions are represented mathematically in the form of an adjacency matrix. On diagonalizing the adjacency matrix, clusters and cluster centers are obtained from the highest eigenvalue and its corresponding vector components. Residue clusters are identified in the strand regions forming the beta barrel and are topologically conserved in all 36 proteins studied. The residues forming the cluster in each of the alpha/beta protein are also conserved among the sequences belonging to the same family. The cluster centers are found to occur in the middle of the strands or in the C-terminal of the strands. In most cases, the residues forming the clusters are part of the active site or are located close to the active site. The folding nucleus of the alpha/beta fold is predicted based on hydrophobicity index evaluation of residues and identification of cluster centers. The predicted nucleation sites are found to occur mostly in the middle of the strands. Proteins 2001;43:103-112.  相似文献   
36.
Pillai B  Kannan KK  Hosur MV 《Proteins》2001,43(1):57-64
Three-dimensional structure of an asymmetrically mutated (C95M) tethered human immunodeficiency virus type 1 protease enzyme (HIV-1 PR) has been determined in an unliganded form using X-ray diffraction data to 1.9 A resolution. The structure, refined using X-PLOR to an R factor of 19.5%, is unexpectedly similar to the ligand-bound native enzyme, rather than to the ligand-free native enzyme. In particular, the two flaps in the tethered dimer are in a closed configuration. The environments around M95 and C1095 are identical, showing no structural effect of this asymmetric mutation at position 95. Oxidation of Cys1095 has been observed for the first time. There is one well-defined water molecule that hydrogen bonds to both carboxyl groups of the essential aspartic acids in the active site. Proteins 2001;43:57-64.  相似文献   
37.
38.
Aerobic and microaerobic diazotrophs possess numerous oxygen restriction strategies to protect nitrogenase from inactivation by oxygen without interfering with energy generation through oxidative phosphorylation. Protection by conformational change in nitrogenase was first detected and described in Azotobacter. This strategy once considerd unique for Azotobacter has been shown in this study to occur in Citrobacterfreundii (Braak) Werkman and Gillen and Klebsiella pneumoniae subspecies rhinoscleromatis (Trevisan) Migula also. However, in these enteric bacteria the entire enzyme is not protected probably due to the absence of any respiratory protection similar to that found in the aerobe, Azotobacter.  相似文献   
39.
There is evidence for a role of cyclic ADP-ribose (cADPR) in intracellular Ca2+ regulation in smooth muscle. cADPR is synthesized and degraded by ADP-ribosyl cyclase and cADPR hydrolase, respectively, by a bifunctional protein, CD38. Nitric oxide (NO) inhibits intracellular Ca2+ mobilization in airway smooth muscle. The present study was designed to determine whether this inhibition is due to regulation of ADP-ribosyl cyclase and/or cADPR hydrolase activity. Sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine, NO donors, produced a concentration-dependent decrease in ADP-ribosyl cyclase, but not cADPR hydrolase, activity. The NO scavenger carboxy-PTIO prevented and reversed, and reduced glutathione prevented, the inhibition of ADP-ribosyl cyclase by SNP, suggesting S-nitrosylation by NO as a mechanism. N-ethylmaleimide, which covalently modifies protein sulfhydryl groups, making them incapable of nitrosylation, produced a marked inhibition of ADP-ribosyl cyclase, but not cADPR hydrolase, activity. SNP and N-ethylmaleimide significantly inhibited the ADP-ribosyl cyclase activity in recombinant human CD38 without affecting the cADPR hydrolase activity. These results provide a novel mechanism for differential regulation of CD38 by NO through a cGMP-independent pathway involving S-nitrosylation of thiols.  相似文献   
40.
Neuromedin U (NMU) is a brain-gut peptide, which peripherally stimulates smooth muscle, increases of blood pressure, alters ion transport in the gut, controls local blood flow, and regulates adrenocortical function. Although intracerebroventricular (i.c.v.) administration of NMU is known to decrease food intake and body weight, little is known about its effect on other physiological functions. We examined the effects of i.c.v. administration of NMU on mean arterial pressure (MAP), heart rate (HR), and plasma norepinephrine in conscious rats. Neuromedin U (0.05 and 0.5 nmol) provoked an increase in MAP (93.8 +/- 0.5 to 123.5 +/- 1.7 and 94.7 +/- 0.8 to 132.7 +/- 3.0 mm Hg, respectively) and HR (334.9 +/- 6.0 to 494.1 +/- 6.9 and 346.3 +/- 3.3 to 475.1 +/- 8.9 beats/min, respectively). In contrast, plasma norepinephrine increased only with a high dose of neuromedin U. Intravenously administered NMU (0.5 nmol) elicited a small and short lasting increase in MAP, compared to that by i.c.v. NMU. These results indicate that central neuromedin U regulates sympathetic nervous system activity and affects cardiovascular function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号